资源描述
人教版八年级数学下册期末试卷测试卷(word版,含解析)
一、选择题
1.要使有意义,则x的取值范围为( )
A.x≠100 B.x>2 C.x≥2 D.x≤2
2.下列条件中,不能得出是直角三角形的是( )
A.,, B.
C. D.
3.如图,在四边形中,,要使四边形成为平行四边形,则应增加的条件是( )
A. B.
C. D.
4.比赛中给一名选手打分时,经常会去掉一个最高分,去掉一个最低分,这样的评分方式一定不会改变选手成绩数据的( )
A.众数 B.平均数 C.中位数 D.方差
5.下列条件中,不能判断一个三角形是直角三角形的是( )
A.三条边的比为2∶3∶4 B.三条边满足关系a2=b2﹣c2
C.三条边的比为1∶1∶ D.三个角满足关系∠B+∠C=∠A
6.如图,菱形的边的垂直平分线交于点,交于点,连接.当时,则( )
A. B. C. D.
7.如图,点E在正方形ABCD的边CD上,若△ABE的面积为8,CE=3,则线段BE的长为( )
A.5 B.1 C.4 D.6
8.对于实数,定义符号其意义为:当时,;当时,.例如:,若关于的函数,则该函数的最大值是( )
A. B. C. D.
二、填空题
9.要使式子有意义,则x的取值范围为________.
10.如图,在菱形ABCD中对角线AC、BD相交于点O,若AB=3,BD=4,则菱形ABCD的面积为_____.
11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米.
12.如图,在中,,于点,,点是斜边的中点,若,则的长为_____.
13.定义:对于一次函数y=kx+b,我们把点(b,k)称为这个一次函数的伴随点.已知一次函数y=﹣2x+m的伴随点在它的图象上,则m=_____.
14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.
15.直线y=x+3与两坐标轴围成的三角形面积是 __________________.
16.甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件,乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为y(个),甲加工零件的时间为x(时),y与x之间的函数图象如图所示,当甲、乙两人相差15个零件时,甲加工零件的时间为______________
三、解答题
17.计算:
(1).
(2).
(3)()×﹣6.
(4)﹣3+.
18.一艘轮船以30千米/时的速度离开港口,向东南方向航行,另一艘轮船同时离开港口,以40千米/时的速度航行,它们离开港口一个半小时后相距75千米,求第二艘船的航行方向.
19.图1、图2均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,在给定的网格中按要求画图,所画图形的顶点均在格点上.
(1)在图1中画一个面积为4的菱形;
(2)在图2中画一个矩形,使其边长都是无理数,且邻边不相等.
20.如图,在矩形中,垂直平分对角线,交于,交于,交于,连接,.
(1)求证:四边形是菱形;
(2)若为的中点,,求的度数.
21.先阅读下列材料,再解决问题:
阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:=|1+|=1+
解决问题:①模仿上例的过程填空:=_________________=________________=_________________
②根据上述思路,试将下列各式化简:
(1); (2).
22.为了做好开学准备,某校共购买了20桶A、B两种桶装消毒液,进行校园消杀,以备开学.已知A种消毒液300元/桶,每桶可供2000米2的面积进行消杀,B种消毒液200元/桶,每桶可供1000米2的面积进行消杀.
(1)设购买了A种消毒液x桶,购买消毒液的费用为y元,写出y与x之间的关系式,并指出自变量x的取值范围;
(2)在现有资金不超过5300元的情况下,求可消杀的最大面积.
23.如图,在菱形中,,是对角线上一点,是线段延长线上一点且,连接.
(1)如图,若是线段的中点,连接,其他条件不变,直接写出线段与的数量关系;
(2)如图,若是线段上任意一点,连接,其他条件不变,猜想线段与的数量关系是什么?并证明你的猜想;
(3)如图,若是线段延长线上一点,其他条件不变,且,菱形的周长为,直接写出的长度.
24.如图1,在平面直角坐标系xOy中,直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0).
(1)求直线AB的函数表达式;
(2)如图2,在线段OB上有一点C(点C不与点O、点B重合),将AOC沿AC折叠,使点O落在AB上,记作点D,在BD上方,以BD为斜边作等腰直角三角形BDF,求点F的坐标;
(3)在(2)的条件下,如图3,在平面内是否存在一点E,使得以点A,B,E为顶点的三角形与ABC全等(点E不与点C重合),若存在,请直接写出满足条件的所有点E的坐标,若不存在,请说明理由.
25.在平面直角坐标系xOy中,对于点P给出如下定义:点P到图形上各点的最短距离为,点P到图形上各点的最短距离为,若,就称点P是图形和图形的一个“等距点”.
已知点,.
(1)在点,,中,______是点A和点O的“等距点”;
(2)在点,,中,______是线段OA和OB的“等距点”;
(3)点为x轴上一点,点P既是点A和点C的“等距点”,又是线段OA和OB的“等距点”.
①当时,是否存在满足条件的点P,如果存在请求出满足条件的点P的坐标,如果不存在请说明理由;
②若点P在内,请直接写出满足条件的m的取值范围.
26.如图,平行四边形ABCD中,连接对角线BD,∠ABD=30°,E为平行四边形外部一点,连接AE、BE、DE,若AE=BE,∠DAE=60°.
(1)如图1,若∠C=45°,BC=2,求AB的长;
(2)求证:DE=BC;
(3)如图2,若∠BCD=15°,连接CE,延长CB与DE交于点F,连接AF,直接写出()2的值.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据二次根式有意义的条件可知,解不等式即可.
【详解】
有意义,
,
解得:.
故选C.
【点睛】
本题考查了二次根式有意义的条件,理解二次根式有意义的条件是解题的关键.
2.C
解析:C
【分析】
根据三角形内角和定理可分析出D的正误;根据勾股定理逆定理可分析出A、B、C的正误.
【详解】
解:A、∵ ,
∴能构成直角三角形,故此选项不符合题意;
B、∵,
∴ ,
∴能构成直角三角形,故此选项不符合题意;
C、∵,
∴不能构成直角三角形,故此选项符合题意;
D、设∠A=2x°,∠B=5x°,∠C=3x°,
3x+2x+5x=180,
解得:x=18,
则5x°=90°,
△ABC是直角三角形,故此选项不符合题意;
故选:C.
【点睛】
本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
3.B
解析:B
【解析】
【分析】
根据平行四边形的判定方法,以及等腰梯形的性质等知识,对各选项进行判断即可.
【详解】
A.错误,当四边形是等腰梯形时,也满足条件.
B.正确,∵,
∴,
∵,
∴四边形是平行四边形.
C.错误,当四边形是等腰梯形时,也满足条件.
D.错误,∵,
∴,与题目条件重复,无法判断四边形是不是平行四边形.
故选:B.
【点睛】
本题考查了平行四边形的判定和性质,平行线的判定,等腰梯形的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.
4.C
解析:C
【解析】
【分析】
去掉一个最高分和最低分后不会对数据的中间的数产生影响,即中位数.
【详解】
解:统计每位选手得分时,去掉一个最高分和一个最低分,这样做不会对数据的中间的数产生影响,即中位数.
故选:C.
【点睛】
本题考查了统计量的选择,解题的关键在于理解这些统计量的意义.
5.A
解析:A
【分析】
根据直角三角形的判定方法,对选项进行一一分析,排除错误答案.
【详解】
A、三条边的比为2:3:4,22+32≠42,故不能判断一个三角形是直角三角形;
B、三条边满足关系a2=b2-c2,即a2+c2=b2,故能判断一个三角形是直角三角形;
C、三条边的比为1:1:,12+12=()2,故能判断一个三角形是直角三角形;
D、三个角满足关系∠B+∠C=∠A,则∠A为90°,故能判断一个三角形是直角三角形.
故选:A.
【点睛】
此题考查勾股定理的逆定理的应用.解题关键在于掌握判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可;若已知角,只要求得一个角为90°即可.
6.B
解析:B
【解析】
【分析】
连接BF,根据菱形的对角线平分一组对角线可得∠BAC=50°,根据线段垂直平分线上的点到两端点的距离相等可得AF=BF,根据等边对等角可得∠FBA=∠FAB,再根据菱形的邻角互补求出∠ABC,然后求出∠CBF,最后根据菱形的对称性可得∠CDF=∠CBF.
【详解】
解:如图,连接BF,
在菱形ABCD中,∠BAC=∠BAD=×100°=50°,
∵EF是AB的垂直平分线,
∴AF=BF,
∴∠FBA=∠FAB=50°,
∵菱形ABCD的对边AD∥BC,
∴∠ABC=180°-∠BAD=180°-100°=80°,
∴∠CBF=∠ABC-∠ABF=80°-50°=30°,
由菱形的对称性,∠CDF=∠CBF=30°.
故选:B.
【点睛】
本题考查了菱形的性质,线段垂直平分线上的点到两端点的距离相等的性质,等边对等角的性质,熟记各性质是解题的关键.
7.A
解析:A
【解析】
【分析】
根据正方形的性质,可求出正方形的面积,从而确定边长,然后在Rt△BCE中利用勾股定理求解即可.
【详解】
解:∵四边形ABCD为正方形,
∴,,
∴,
∴正方形的边长,
在Rt△BCE中,BC=4,CE=3,
∴,
故选:A.
【点睛】
本题考查正方形的性质,理解正方形的性质以及熟练运用勾股定理是解题关键.
8.C
解析:C
【分析】
根据定义先列不等式:和,确定其,对应的函数,画图象可知其最大值.
【详解】
解:由题意得:,解得:,
当时,,
当时,,,
由图象可知:此时该函数的最大值为;
当时,,
当时,,,
由图象可知:此时该函数的最大值为;
综上所述,,的最大值是当所对应的的值,
如图所示,当时,,
故选:C
【点睛】
本题考查了新定义、一元一次不等式及一次函数的交点问题,认真阅读理解其意义,并利用数形结合的思想解决函数的最值问题.
二、填空题
9.x≥﹣3且x≠1且x≠2
【解析】
【分析】
根据被开方数大于等于0,分母不等于0,零指数幂的底数不等于0列式计算即可得解.
【详解】
解:根据题意,得.
解得:x≥﹣3且x≠1且x≠2.
故答案是:x≥﹣3且x≠1且x≠2.
【点睛】
本题考查的是代数式有意义的条件,掌握二次根式与分式,零次幂有意义的条件是解题的关键.
10.A
解析:
【解析】
【分析】
根据勾股定理求出对角线AC的长,然后利用菱形面积公式计算即可.
【详解】
解:四边形ABCD是菱形,,
,
,
,
,
则S菱形ABCD,
故答案为:.
【点睛】
本题主要考查了菱形的性质,勾股定理,菱形的面积公式等知识点,利用勾股定理求出AC是关键.
11.3
【解析】
【分析】
竹子折断后刚好构成一直角三角形,设竹子折断处离地面x米,则斜边为(8-x)米.利用勾股定理解题即可.
【详解】
解:设竹子折断处离地面x米,则斜边为(8-x)米,
根据勾股定理得:x2+42=(8-x)2
解得:x=3.
∴折断处离地面高度是3米,
故答案为:3.
【点睛】
此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.
12.2
【分析】
根据角之间的关系求得,从而求得的长.
【详解】
解:∵,
∴
又∵
∴,
又∵点是斜边的中点
∴
∴
∴
∴为等腰直角三角形
∴
故答案为2.
【点睛】
此题主要考查了直角三角形的有关性质,熟练掌握勾股定理、斜边中线等于斜边一半等性质是解题的关键.
13.2
【分析】
根据题意可以求得一次函数y=﹣2x+m的伴随点,然后根据一次函数y=﹣2x+m的伴随点在它的图象上,从而可以求得m的值.
【详解】
解:由题意可得,
y=﹣2x+m的伴随点是(m,﹣2),
∵一次函数y=﹣2x+m的伴随点在它的图象上,
∴﹣2=﹣2m+m,
解得,m=2,
故答案为:2.
【点睛】
本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.
14.A
解析:
【详解】
解:设AC与BD相交于点O,连接OP,过D作DM⊥AC于M,
∵四边形ABCD是矩形,
∴,AC=BD,∠ADC=90°.
∴OA=OD.
∵AB=3,AD=4,∴由勾股定理得:AC= .
∵ ,∴DM=.
∵,
∴ .
∴PE+PF=DM=.故选B.
15.【分析】
利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y=x+3与两坐标轴围成的三角形面积.
【详解】
解:当x=0时,y=3,
∴直线
解析:
【分析】
利用一次函数图象上点的坐标特征,可求出直线与两坐标轴的交点坐标,再利用三角形的面积计算公式,即可求出直线y=x+3与两坐标轴围成的三角形面积.
【详解】
解:当x=0时,y=3,
∴直线y=x+3与y轴的交点坐标为(0,3);
当y=0时,x+3=0,解得:x=﹣3,
∴直线y=x+3与x轴的交点坐标为(﹣3,0).
∴直线y=x+3与两坐标轴围成的三角形面积为×|﹣3|×3=.
故答案为:.
【点睛】
本题考查了一次函数图象上点的坐标特征以及三角形的面积,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.
16.或或
【分析】
结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像
解析:或或
【分析】
结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像,通过列一元一次方程并求解,即可得到答案.
【详解】
根据题意,甲加工到100个零件,需要的时间为:(小时)
∴甲加工零件的时间(时)
∴甲加工的零件数为,即
∵乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务
∴乙在3小时后,每小时加工零件数为:(个)
∴乙加工的零件数为,即
甲、乙两人相差15个零件,分甲比乙少15个零件和甲比乙多15个零件两种情况;
根据y与x之间的函数图象,当甲比乙少15个零件时,得:
∴;
当甲比乙多15个零件时,分和两种情况;
当时,得
∴
当时,
∴;
故答案为:或或.
【点睛】
本题考查了一次函数、一元一次方程的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.
三、解答题
17.(1)5;(2)7﹣2;(3)﹣6;(4).
【分析】
(1)利用二次根式的除法法则运算;
(2)利用完全平方公式计算;
(3)先利用二次根式的乘法法法则运算,然后化简后合并即可;
(4)先把各二次
解析:(1)5;(2)7﹣2;(3)﹣6;(4).
【分析】
(1)利用二次根式的除法法则运算;
(2)利用完全平方公式计算;
(3)先利用二次根式的乘法法法则运算,然后化简后合并即可;
(4)先把各二次根式化为最简二次根式,然后合并即可.
【详解】
解:(1)原式=+,
=2+3,
=5;
(2)原式=5﹣2+2,
=7﹣2;
(3)原式=﹣2﹣3,
=3﹣6﹣3,
=﹣6;
(4)原式=2﹣+,
=.
【点睛】
本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则、乘法公式是解决问题的关键.
18.第二艘船的航行方向为东北或西南方向
【分析】
根据路程=速度×时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解.
【详解】
解:如图,
根据题意,
解析:第二艘船的航行方向为东北或西南方向
【分析】
根据路程=速度×时间分别求得OA、OB的长,再进一步根据勾股定理的逆定理可以证明三角形OAB是直角三角形,从而求解.
【详解】
解:如图,
根据题意,得
(千米),(千米),千米.
∵,
∴,∴
∴第二艘船的航行方向为东北或西南方向.
【点睛】
此题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.根据条件得出第二艘船的航行方向与第一艘船的航行方向成90°是解题的关键.
19.(1)见解析;(2)见解析.
【解析】
【分析】
(1)直接利用菱形的性质画出符合题意的菱形;
(2)利用网格结合矩形的判定和性质得出答案.
【详解】
(1)如图1所示:其四边形是菱形,且面积为4;
解析:(1)见解析;(2)见解析.
【解析】
【分析】
(1)直接利用菱形的性质画出符合题意的菱形;
(2)利用网格结合矩形的判定和性质得出答案.
【详解】
(1)如图1所示:其四边形是菱形,且面积为4;
(2)如图2所示:其四边形是边长为无理数的矩形.
【点睛】
本题考查应用设计与作图,解题的关键是熟练掌握菱形的性质与矩形的判定和性质.
20.(1)见解析;(2)60°
【分析】
(1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论
(2)由
解析:(1)见解析;(2)60°
【分析】
(1)根据垂直平分线的性质,可以得到,,,由矩形的性质,得到, 根据平行线的性质,利用证明从而得到,结合上步所求,由四边相等的四边形是菱形即可得出结论
(2)由题意,可以得到垂直平分 从而得出 结合题意可得 的度数,进而求得的度数
【详解】
(1)证明:垂直平分,
,,,
四边形是矩形,
,
,,
,
,
,
四边形是菱形.
(2)为中点,,
垂直平分,
,
,
为等边三角形,
,
,
.
【点睛】
本题主要考查了矩形的性质,平行线的性质,全等三角形的判定,菱形的判定,等边三角形的判定和性质,熟练掌握这些性质及判定定理是解题关键.
21.①,,3+;②(1)5-;(2) .
【解析】
【分析】
①模仿阅读材料的方法将原式变形,计算即可得到结果;
②仿照以上方法将各式化简即可.
【详解】
①===3+,
故答案为,,3+;
②(1)
解析:①,,3+;②(1)5-;(2) .
【解析】
【分析】
①模仿阅读材料的方法将原式变形,计算即可得到结果;
②仿照以上方法将各式化简即可.
【详解】
①===3+,
故答案为,,3+;
②(1)
=
=
=
=
=5-;
(2)
=
=
=
=
=.
【点睛】
本题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.
22.(1)y=100x+4000(0<x<20且x为整数);(2)33000米2.
【分析】
(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;
(2)根据现有资金不超过5300元,
解析:(1)y=100x+4000(0<x<20且x为整数);(2)33000米2.
【分析】
(1)根据题意,可以写出y与x之间的关系式,并写出自变量x的取值范围;
(2)根据现有资金不超过5300元,可以求得x的取值范围,再根据题意,可以得到消杀面积与x的函数关系式,然后根据一次函数的性质,即可得到可消杀的最大面积.
【详解】
解:(1)由题意可得,
y=300x+200(20﹣x)=100x+4000,
即y与x之间的关系式为y=100x+4000(0<x<20且x为整数);
(2)∵现有资金不超过5300元,
∴100x+4000≤5300,
解得,x≤13,
设可消杀的面积为S米2,
S=2000x+1000(20﹣x)=1000x+20000,
∴S随x的增大而增大,
∴当x=13时,S取得最大值,此时S=33000,
即可消杀的最大面积是33000米2.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.
23.(1);(2),证明见解析;(3)7
【分析】
(1)由菱形的性质和已知条件得出是等边三角形,得出,由等边三角形的性质和已知条件得出,由等腰三角形的性质和三角形的外角性质得出,即可得出结论.
(2)
解析:(1);(2),证明见解析;(3)7
【分析】
(1)由菱形的性质和已知条件得出是等边三角形,得出,由等边三角形的性质和已知条件得出,由等腰三角形的性质和三角形的外角性质得出,即可得出结论.
(2)过点作交于点,先证明是等边三角形,得出,,再证明是等边三角形,得出,,然后由证得,即可得出结论.
(3)过点作交延长线于点,证明同(2),得出,证明,,则,,得出,,则,由勾股定理即可得出结果.
【详解】
解:(1);理由如下:
四边形是菱形,
,
,
是等边三角形,
,
是线段的中点,
,,
,
,
,
,
.
故答案为;
(2)猜想线段与的数量关系为:;
证明:过点作交于点,如图所示:
四边形为菱形,,
,,,与都是等边三角形,
,,
,
又,
,
又,
是等边三角形,
,
,,
又,
,
在和中,
,
,
;
(3)过点作交延长线于点,如图:
四边形为菱形,,菱形的周长为,
是等边三角形,,
,,
,
又,
,
又,
是等边三角形,
,
,,
又,
,
在和中,
,
,
,
,,
,
是等边三角形,
,
,
在中,,
,,
,
,
,
,
由勾股定理得:.
【点睛】
本题是四边形综合题,主要考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定与性质、含角直角三角形的性质、勾股定理、平行线的性质、三角形内角和定理、三角形外角性质等知识;解题的关键是熟练掌握菱形的性质,证明三角形全等和等边三角形.
24.(1);(2);(3)或或
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,
解析:(1);(2);(3)或或
【解析】
【分析】
(1)直接利用待定系数法,即可得出结论;
(2)先求出AD=3,AB=5,进而求出点D的坐标,再构造出△BMF≌△FND,得出BM=FN,FM=DN,设F(m,n),进而建立方程组求解,即可得出结论;
(3)分两种情况,①当时,利用中点坐标公式求解,即可得出结论;②当时,当点E在AB上方时,根据AE∥BC,即可得出结论;③当点E在AB下方时,过点作轴于,过点作轴,过点作,证明,即可得出结论.
【详解】
(1)设直线的函数表达式为,
直线AB交y轴于点A(0,3),交x轴于点B(﹣4,0),
直线的函数表达式为;
(2)如图,过点分别引轴的垂线,交轴于两点,
∵点A(0,3),点B(-4,0),
∴OA=3,OB=4,
∴AB=5,
由折叠知,AD=OA=3,
设
,
解得:
在上,
解得,
,
过点F作FM⊥x轴于M,延长HD交FM于N,
∴∠BMF=∠FND=90°,
∴∠BFM+∠FBM=90°,
∵△BFD是等腰直角三角形,
∴BF=DF,∠BFD=90°,
∴∠BFM+∠DFN=90°,
∴∠FBM=∠DFN,
∴△BMF≌△FND(AAS),
∴BM=FN,FM=DN,
设F(m,n),
则
;
(3)设OC=a,则BC=4-a,
由折叠知,∠BDC=∠ADC=∠AOC=90°,CD=OC=a,
在Rt△BDC中,,
∴,
∴a=,
,
∵点A,B,E为顶点的三角形与△ABC全等,
①当△ABC≌△ABE'时,
∴BE'=BC,∠ABC=∠ABE',
连接CE'交AB于D,
则CD=E'D,CD⊥AB,由(1)知,
设E'(b,c),
∴
∴,
∴;
②当△ABC≌BAE时,当点E在AB上方时,
∴AC=BE,BC=AE,,
∴AE∥BC,
∴;
③当点E在AB下方时,AC=BE'',BC=AE'',
,
,
当时,
,
,,
过点作轴于,过点作轴,过点作,
,,
,
,
即,
,
,
,
点,,
,=,
,
∴,
满足条件的点E的坐标为或或.
【点睛】
本题考查了待定系数法,折叠的性质,等腰直角三角形的性质,全等三角形的判定和性质,平移的性质,勾股定理,中点坐标公式,构造出全等三角形,分类讨论是解题的关键.
25.(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);②
【分析】
(1)根据“等距点”的定义,即可求解;
(2)根据“等距点”的定义,即可求解;
(3)①根据点P是线段OA和OB的“等距点
解析:(1)点E;(2)点H;(3)①存在,点P的坐标为(7,7);②
【分析】
(1)根据“等距点”的定义,即可求解;
(2)根据“等距点”的定义,即可求解;
(3)①根据点P是线段OA和OB的“等距点”,可设点P(x,x)且x>0,再由点P是点A和点C的“等距点”,可得 ,从而得到 ,即可求解;
②根据点P是线段OA和OB的“等距点”, 点P在∠AOB的角平分线上,可设点P(a,a)且a>0,根据OA=OB,可得OP平分线段AB,再由点P在内,可得 ,根据点P是点A和点C的“等距点”,可得 ,从而得到,整理得到,即可求解.
【详解】
解:(1)根据题意得: , , ,
, , ,
∴ ,
∴点是点A和点O的“等距点”;
(2)根据题意得:线段OA在x轴上,线段OB在y轴上,
∴点到线段OA的距离为1,到线段OB的距离为2,
点到线段OA的距离为2,到线段OB的距离为2,
点到线段OA的距离为6,到线段OB的距离为3,
∴点到线段OA的距离和到线段OB的距离相等,
∴点是线段OA和OB的“等距点”;
(3)①存在,点P的坐标为(7,7),理由如下:
∵点P是线段OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上,
∴可设点P(x,x)且x>0,
∵点P是点A和点C的“等距点”,
∴ ,
∵点C(8,0),,
∴ ,
解得: ,
∴点P的坐标为(7,7);
②如图,
∵点P是线段OA和OB的“等距点”,且线段OA在x轴上,线段OB在y轴上,
∴点P在∠AOB的角平分线上,
可设点P(a,a)且a>0,
∵,.
∴OA=OB=6,
∴OP平分线段AB,
∵点P在内,
∴当点P位于AB上时, 此时点P为AB的中点,
∴此时点P的坐标为 ,即 ,
∴ ,
∵点P是点A和点C的“等距点”,
∴ ,
∵点,,
∴,
整理得: ,
当 时,点C(6,0),
此时点C、A重合,则a=6(不合题意,舍去),
当时, ,
∴,解得: ,
即若点P在内,满足条件的m的取值范围为.
【点睛】
本题主要考查了平面直角坐标系内两点间的距离,点到坐标轴的距离,等腰三角形的性质,角平分线的判定等知识,理解新定义,利用数形结合思想解答是解题的关键.
26.(1);(2)证明见解析;(3)
【分析】
(1)过点D作DF⊥AB于F,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF和BF的长即可求解.
(2)过点E作EF⊥AB于F,过点
解析:(1);(2)证明见解析;(3)
【分析】
(1)过点D作DF⊥AB于F,有等腰直角三角形和含30度角的直角三角形的性质,利用勾股定理求出AF和BF的长即可求解.
(2)过点E作EF⊥AB于F,过点A作AG⊥BD交BD延长线于G,先证明△GAD≌△FAE,再证明三角形ADE时等边三角形,即可得到答案;
(3)过点A作AP⊥DE于P,过点D作DN⊥BF于点N,可证明∠BDN=∠DBN=45°,∠FDN=30°,以及EF=BF,设FN=m,根据勾股定理,用含m的式子分别表示出和,即可得出结果.
【详解】
解:(1)如图,过点D作DF⊥AB于F,
∴∠AFD=∠BFD=90°
∵四边形ABCD是平行四边形,∠C=45°,BC=2
∴∠A=∠C=45°,AD=BC=2
∴AF=DF,
∵∠DBA=30°,
∴BD=2DF,
在直角三角形AFD中,,
∴,
∴,
∴,
在直角三角形DFB中,,
∴;
(2)过点E作EF⊥AB于F,过点A作AG⊥BD交BD延长线于G,
∵AE=BE,
∴,
∵∠G=90°,∠DBA=30°,
∴,∠DAB=60°
∴,
∵∠DAE=60°,
∴∠GAD=∠FAE=60°-∠DAF,
∵∠G=∠AFE=90°,
∴△GAD≌△FAE(ASA),
∴AD=AE,
∴三角形ADE时等边三角形,
∴AD=DE,
∴DE=BC;
(3)如图,过点A作AP⊥DE于P,过点D作DN⊥BF于点N,则∠APE=∠APF=∠DNF=∠DNB=90°,
∵四边形ABCD是平行四边形,
∴AB∥CD,AD∥BC,
∴∠ABF=∠C=15°,∠DFB=∠ADF=60°,
∴∠DBN=∠ABF+∠ABD=45°,∠FDN=30°,
∴∠BDN=∠DBN=45°,
∴∠EBD=∠EDB=∠FDN+∠BDN=75°,
∴∠FEB=180°-75°-75°=30°,
∴∠FBE=∠DFB-∠FEB=60°-30°=30°=∠FEB,
∴EF=BF,
设FN=m,DF=2m,
∴,
∴,,
∴,
∴,
∵,
∴,
∴,
∵,
∴.
【点睛】
本题主要考查了等腰三角形的性质,等腰直角三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,平行四边形的性质,全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
展开阅读全文