收藏 分销(赏)

人教版八年级数学下册期末试卷测试与练习(word解析版).doc

上传人:快乐****生活 文档编号:1911163 上传时间:2024-05-11 格式:DOC 页数:30 大小:851.54KB
下载 相关 举报
人教版八年级数学下册期末试卷测试与练习(word解析版).doc_第1页
第1页 / 共30页
人教版八年级数学下册期末试卷测试与练习(word解析版).doc_第2页
第2页 / 共30页
人教版八年级数学下册期末试卷测试与练习(word解析版).doc_第3页
第3页 / 共30页
人教版八年级数学下册期末试卷测试与练习(word解析版).doc_第4页
第4页 / 共30页
人教版八年级数学下册期末试卷测试与练习(word解析版).doc_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、人教版八年级数学下册期末试卷测试与练习(word解析版)一、选择题1式子有意义,则x的取值范围是()Ax2Bx2Cx2Dx22下列各组数中,能作为直角三角形的三边长的是( )A2,2,3B2,3,4C3,4,5D4,5,63下列说法,属于平行四边形判定方法的有( )两组对边分别平行的四边形是平行四边形;平行四边形的对角线互相平分;两组对边分别相等的四边形是平行四边形;平行四边形的每组对边平行且相等;两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形A6个B5个C4个D3个4某校劳动实践活动中,甲,乙两块试验田3次果蔬平均产量都是,方差分别是,则这两块试验田3次果蔬产

2、量较稳定的是( )A甲B乙C甲和乙一样稳定D不能确定5已知实数a,b为的两边,且满足,第三边,则第三边c上的高的值是 ABCD6如图,在平行四边形ABCD中,E为边CD上一点,将ADE沿AE折叠至AFE处若B42,DAE20,则FEC的大小为()A50B54C56D627如图,四边形是边长为9的正方形纸片,将其沿折叠,使点落在边上的点处,点的对应点为点,则的长为( )A1.8B2C2.3D8一次函数ykx+b(k0)的图象经过点B(6,0),且与正比例函数yx的图象交于点A(m,3),若kxxb,则()Ax0Bx3Cx6Dx9二、填空题9若a,b都是实数,且,则ab+1的平方根为 _10菱形的

3、两条对角线长分别为5和8,则这个菱形的的面积为_11在直角三角形中,两边长分别为3和4,则最长边的长度为_12如图,在矩形中,对角线、相交于点,则的长是_13若一次函数ykx1的图象经过点(2,1),则k的值为_14如图,在四边形中,分别是,的中点,要使四边形是菱形,四边形还应满足的一个条件是_15如图所示,直线与两坐标轴分别交于、两点,点是的中点,、分别是直线、轴上的动点,当周长最小时,点的坐标为_16如图,矩形ABCD中,AB6,BC8,E为AD中点,F为AB上一点,将AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是_三、解答题17计算:(1);(2)18如图,一根直立的旗

4、杆高8米,一阵大风吹过,旗杆从点C处折断,顶部(B)着地,离旗杆底部(A)4米,工人在修复的过程中,发现在折断点C的下方1.25米D处,有一明显裂痕,若下次大风将旗杆从D处吹断,则距离旗杆底部周围多大范围内有被砸伤的危险?19在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才能叫“整数三角形”甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到了周长为24的“整数三角形”丙同学受到甲、乙两同学的启发找到了两个不同的等腰“整数三角形”请完成: (1)以点A为一个顶点,在图2中作出乙同

5、学找到的周长为24的“整数三角形”,并在每边周边标注其边长; (2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长; (3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由 20如图,已知点是中边的中点,连接并延长交的延长线于点,连接,(1)求证:四边形为矩形;(2)若是等边三角形,且边长为6,求四边形的面积21先化简,再求值:a+,其中a1007如图是小亮和小芳的解答过程(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:a+2,其中a201822某学校欲购置一批标价为4800元的某种型号电脑,

6、需求数量在6至15台之间经与两个专卖店商谈,优惠方法如下:甲店:购买电脑打八折;乙店:先赠一台电脑,其余电脑打九折优惠设学校欲购置x台电脑,甲店购买费用为y甲(元),乙店购买费用为y乙(元)(1)分别写出购买费用y甲、y乙与所购电脑x(台)之间的函数关系式;(2)对x的取值情况进行分析,说明这所学校购买哪家电脑更合算?23(1)(教材呈现)如图是华师版八年级下册数学教材第117页的部分内容:如图,已知矩形的对角线的垂直平分线与边、分别交于点、求证:四边形是菱形分析:要证四边形是菱形,由已知条件可知,所以只需证明四边形是平行四边形,又知垂直平分,所以只需证明请结合图1,补全证明过程(2)(应用)

7、如图2,将矩形沿直线翻折,使点的对称点与点重合,点的对称点为,直线分别交矩形的边、于点、,若,则折痕的长为_(3)(拓展)如图3,将沿直线翻折,使点的对称点与点重合,点的对称点为,直线分别交的边、于点、,若,则四边形的面积是_24如图1,直线y=kx+b经过第一象限内的定点P(3,4)(1)若b=7,则k=_;(2)如图2,直线y=kx+b与y轴交于点C,已知点A(6,t),过点A作AB/y轴交第一象限内的直线y=kx+b于点B,连接OB,若BP平分OBA证明是等腰三角形;求k的值;(3)如图3,点M是x轴正半轴上的一个动点,连接PM,把线段PM绕点M顺时针旋转90至线段NM(PMN=90且P

8、M=MN),连接OP,ON,PN,当周长最小时,求点N的坐标;25如图,四边形ABCD是边长为3的正方形,点E在边AD所在的直线上,连接CE,以CE为边,作正方形CEFG(点C、E、F、G按逆时针排列),连接BF. (1)如图1,当点E与点D重合时,BF的长为 ;(2)如图2,当点E在线段AD上时,若AE=1,求BF的长;(提示:过点F作BC的垂线,交BC的延长线于点M,交AD的延长线于点N.)(3)当点E在直线AD上时,若AE=4,请直接写出BF的长.26如图,在长方形中,延长到点,使,连接动点从点出发,沿着以每秒1个单位的速度向终点运动,点运动的时间为秒(1)的长为 ;(2)连接,求当为何

9、值时,;(3)连接,求当为何值时,是直角三角形;(4)直接写出当为何值时,是等腰三角形【参考答案】一、选择题1A解析:A【分析】根据二次根式的性质和被开方数大于或等于0,可以求出x的范围【详解】解:根据二次根式的性质,被开方数大于或等于0,可知:x20,解得:x2故选A【点睛】此题主要考查了二次根式的意义的条件关键是把握二次根式中的被开方数必须是非负数,否则二次根式无意义2C解析:C【分析】根据勾股定理的逆定理判断即可如果一个三角形的三边满足,那么这个三角形是直角三角形【详解】解:A、,所以2,2,3不能作为直角三角形的三边,不符合题意;B、,所以2,3,4不能作为直角三角形的三边,不符合题意

10、;C、,所以3,4,5能作为直角三角形的三边,符合题意;D、,所以4,5,6不能作为直角三角形的三边,不符合题意;故选:C【点睛】此题考查了勾股定理的逆定理,解题的关键是熟练掌握勾股定理的逆定理如果一个三角形的三边满足,那么这个三角形是直角三角形3C解析:C【解析】【分析】根据平行四边形的判定方法分析即可;【详解】两组对边分别平行的四边形是平行四边形,故正确;平行四边形的对角线互相平分,是平行四边形的性质,故错误;两组对边分别相等的四边形是平行四边形,故正确;平行四边形的每组对边平行且相等,是平行四边形的性质,故错误;两条对角线互相平分的四边形是平行四边形,故正确;一组对边平行且相等的四边形是

11、平行四边形,故正确;故正确的是;故答案选C【点睛】本题主要考查了平行四边形的判定,准确分析判断是解题的关键4A解析:A【解析】【分析】根据两组数据的平均数相同,则方差小的更稳定即可求解【详解】甲,乙两块试验田3次果蔬平均产量都是,方差分别是,这两块试验田3次果蔬产量较稳定的是:甲故选A【点睛】本题考查了方差的意义,若两组数据的平均数相同,则方差小的更稳定,理解方差的意义是解题的关键5D解析:D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面

12、积得出c边上高即可【详解】解:整理得,所以,解得;因为,所以,所以是直角三角形,设第三边c上的高的值是h,则的面积,所以故选:D【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为06C解析:C【解析】【分析】根据折叠的性质得到AEFAED,再根据平行四边形的性质得到D,根据三角形内角和定理求得AED,根据补角求得AEC即可得到答案.【详解】解:四边形ABCD是平行四边形,BD42,DAE20,AED1804220118,AEC62,将ADE沿AE折叠至AFE处,AEFAED118,FECAEFAEC1186256故选C【点睛】

13、本题主要考查了平行四边形的性质,折叠的性质,三角形内角和定理,补角的性质解题的关键在于能够熟练掌握相关知识进行求解.7B解析:B【解析】【分析】连接BM,MB,由于CB=3,则DB=6,在RtABM和RtMDB中由勾股定理求得AM的值【详解】解:连接BM,MB,设AM=x,在RtABM中,AB2+AM2=BM2,在RtMDB中,BM2=MD2+DB2,折叠,MB=MB,AB2+AM2= MD2+DB2,即92+x2=(9-x)2+(9-3)2,解得x=2,即AM=2,故选:B【点睛】本题考查了翻折的性质,对应边相等,利用了勾股定理建立方程求解8D解析:D【分析】先利用正比例函数解析式,确定A点

14、坐标;然后利用函数图像,写出一次函数y=kx+b(k0)的图像,在正比例函数图像上方所对应的自变量的范围.【详解】解:把A(m,3)代入yx得m3,解得m9,所以当x9时,kx+bx,即kxxb的解集为x9故选D【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题95【解析】【分析】根据二次根式有意义的条件可得: ,再解可得a的值,然后可得b的值,进而可得ab+1的平方根【详解】解:由题意得:,解得:a3,则b

15、8,ab+125,25的平方根为5,故答案为:5【点睛】本题主要考查了二次根式的概念,平方根的运算,熟悉掌握二次根式的非负性是解题的关键1020【解析】【分析】菱形的面积是对角线乘积的一半,由此可得出结果【详解】解:菱形的两条对角线长分别为5和8,菱形的面积:故答案为:20【点睛】本题考查了菱形的面积,菱形面积的求解方法有两种:底乘以高,对角线积的一半,解题关键是对面积公式的熟练运用114或5【解析】【分析】分类讨论,当4为直角边时,当4为斜边时,依次求出答案即可【详解】解:当4为斜边时,此时最长边为4当4是直角边时,斜边,此时最长边为5故答案是:4或5【点睛】此题考查了勾股定理解题时,注意分

16、类讨论,以防漏解12A解析:【分析】根据矩形的性质得出OA=OB=OC=OD,BAD=90,求出AOB是等边三角形,求出OB=AB=5,根据矩形的性质求出BD,根据勾股定理求出AD即可【详解】解:四边形ABCD是矩形,OA=OB=OC=OD, BAD=90, AOB是等边三角形,OB=AB=5,BD=2BO=10,在RtBAD中, 故答案为:【点睛】考查矩形的性质,勾股定理等,等边三角形的性质与判定,掌握矩形的对角线相等是解题的关键.13-1【分析】一次函数y=kx-1的图象经过点(-2,1),将其代入即可得到k的值【详解】解:一次函数ykx1的图象经过点(2,1),即当x2时,y1,可得:1

17、-2k1,解得:k1则k的值为1【点睛】本题考查一次函数图像上点的坐标特征,要注意利用一次函数的特点以及已知条件列出方程,求出未知数14【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得且,同理可得且,且,然后证明四边形是平行四边形,再根据邻边相等的平行四边形是菱形解答【详解】解:还应满足理由如下:,分别是,的中点,且,同理可得:且,且,且,四边形是平行四边形,即,是菱形故答案是:【点睛】本题考查了中点四边形,其中涉及到了菱形的判定,平行四边形的判定,三角形的中位线定理,根据三角形的中位线平行于第三边并且等于第三边的一半得到四边形的对边平行且相等从而判定出平行四边形是解题的关键,也

18、是本题的突破口15【分析】作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DFDC,ECEG,故当点F,D,E,G在同一直线上时,CDE的周长CDDECEDFDE解析:【分析】作点C关于AB的对称点F,关于AO的对称点G,连接DF,EG,由轴对称的性质,可得DFDC,ECEG,故当点F,D,E,G在同一直线上时,CDE的周长CDDECEDFDEEGFG,此时DEC周长最小,然后求出F、G的坐标从而求出直线FG的解析式,再求出直线AB和直线FG的交点坐标即可得到答案【详解】解:如图,作点C关于AB的对称点F,关于AO的对称点G,连接FG分别交AB、OA于点D、E

19、,由轴对称的性质可知,CD=DF,CE=GE,BF=BC,FBD=CBD,CDE的周长=CD+CE+DE=FD+DE+EG,要使三角形CDE的周长最小,即FD+DE+EG最小,当F、D、E、G四点共线时,FD+DE+EG最小,直线yx2与两坐标轴分别交于A、B两点,B(-2,0),OAOB,ABCABD45,FBC=90,点C是OB的中点,C(,0),G点坐标为(1,0),F点坐标为(-2,),设直线GF的解析式为,直线GF的解析式为,联立,解得,D点坐标为(,)故答案为:(,)【点睛】本题主要考查了轴对称-最短路线问题,一次函数与几何综合,解题的关键是利用对称性在找到CDE周长的最小时点D、

20、点E位置,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点16【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到CDE与CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在RtBCF中利用勾股定理即可得到x的值,在RtAEF中利用勾股解析:【分析】连接EC,利用矩形的性质以及折叠的性质,即可得到CDE与CGE全等,设AF=x,则可得CF=x+6,BF=6-x,在RtBCF中利用勾股定理即可得到x的值,在RtAEF中利用勾股定理即可求出EF的长度【详解】解:如图所示,连接CE,E为AD中点,AEDE4,由折叠可得,AEGE,EGFA90,DEGE,

21、又D90,EGCD90,又CECE,RtCDERtCGE(HL),CDCG6,设AFx,则GFx,BF6x,CF6x,B90,RtBCF中,BF2+BC2CF2,即(6x)2+82(x+6)2,解得x,AF,A90,RtAEF中,EF,故答案为:【点睛】本题主要考查了矩形的性质以及折叠问题,解题时我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案三、解答题17(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可【详解】解:(1)原式(2)原式532【点睛】

22、本题考查的是二次根式解析:(1)3;(2)2【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算即可【详解】解:(1)原式(2)原式532【点睛】本题考查的是二次根式的加减运算,二次根式的混合运算,掌握利用平方差公式进行简便运算是解题的关键.186【分析】先根据勾股定理求得,进而求得,根据勾股定理即可求得范围【详解】由题意可知,则,即,解得,若下次大风将旗杆从D处吹断,如图,BD,则距离旗杆底部周围6米范围内解析:6【分析】先根据勾股定理求得,进而求得,根据勾股定理即可求得范围【详解】由题意可知,则,即,解得,若下次大风将旗杆从D处吹断,如图,BD,则距离旗杆底部

23、周围6米范围内有被砸伤的危险【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键19(1)见解析;(2)见解析;(3)不能,理由见解析;【解析】【分析】(1)根据勾股定理以及题目给的数据作出边长分别为的“整数三角形”;(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以解析:(1)见解析;(2)见解析;(3)不能,理由见解析;【解析】【分析】(1)根据勾股定理以及题目给的数据作出边长分别为的“整数三角形”;(2)根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为的等腰三角形;(3)根据题意先求得等边三角形的面积,比较面积和边长的关系即可得出不能找到等边“整数三角形”【详解】(

24、1)如图1,以为顶点,周长为的直角“整数三角形”的边长为以为顶点,周长为的直角“整数三角形”的边长为如图:(2)如图,根据勾股定理,作出两个不同的等腰“整数三角形”可以是边长为的等腰三角形(3)不存在,理由如下:如图,是等边三角形,是三角形边上的高,设(为正整数)则是整数,则是无理数,不存在边长和面积都是整数的等边三角形故找不到等边“整数三角形”【点睛】本题考查了勾股定理的应用,等边三角形的性质,熟练利用勾股定理找到勾股数是解题的关键20(1)见解析;(2)四边形的面积【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,再利用勾股定理求解,从而可

25、得答案.【详解】(1)证明解析:(1)见解析;(2)四边形的面积【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,再利用勾股定理求解,从而可得答案.【详解】(1)证明:四边形是平行四边形,点是中边的中点, ,四边形是平行四边形,又,平行四边形为矩形;(2)解:由(1)得:四边形为矩形,是等边三角形,四边形的面积【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21(1)小亮(2)=-a(a0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,

26、判断出小亮的计算是错误的;(2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2)=-a(a0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的;(2)错误原因是:二次根式的性质=|a|的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可.试题解析:(1)小亮(2)=-a(a0)(3)原式a+2a+2(3-a)6-a=6-(-2018)2024.22(1),y甲3840x(6x15);y乙4320x4320(6x15);(2)当购买9台电脑时,到两家商店购买费用相同;当10x15时,

27、到甲商店更合算;当6x8时,到乙商店更合解析:(1),y甲3840x(6x15);y乙4320x4320(6x15);(2)当购买9台电脑时,到两家商店购买费用相同;当10x15时,到甲商店更合算;当6x8时,到乙商店更合算【分析】(1)根据两家电脑商的优惠方法可得y甲(元),乙店购买费用为y乙(元);(2)根据(1)的结论列方程或不等式解答即可【详解】解:(1)由题意可得:y甲48000.8x3840x(6x15);y乙48000.9(x1)4320x4320(6x15);(2)当3840x4320x4320时,解得x9,即当购买9台电脑时,到两家商店购买费用相同;当3840x4320x43

28、20时,解得x9,即当10x15时,到甲商店更合算;当3840x4320x4320时,解得x9,即当6x8时,到乙商店更合算【点睛】本题考查了一次函数的应用,读懂题目信息,理解两家电脑商的优惠方法并表示出y甲、y乙与所购电脑x(台)之间的函数关系式是解题的关键23(1)见解析;(2);(3)【教材呈现】由“ASA”可证AOECOF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平行四边形,即可证平行四边形AFCE是菱形;解析:(1)见解析;(2);(3)【教材呈现】由“ASA”可证AOECOF,可得OE=OF,由对角线互相平分的四边形是平行四边形可证四边形AFCE是平

29、行四边形,即可证平行四边形AFCE是菱形;【应用】过点F作FHAD于H,由折叠的性质可得AF=CF,AFE=EFC,由勾股定理可求BF的长,EF的长,【拓展】过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,由等腰直角三角形的性质可求AN=BN=2,由勾股定理可求AE=AF=,再利用勾股定理可求EF的长【详解】解:(1)四边形是矩形,垂直平分,又,四边形是平行四边形,平行四边形是菱形;(2)如图,过点F作FHAD于H,将矩形ABCD沿EF翻折,使点C的对称点与点A重合,AF=CF,AFE=EFC,AF2=BF2+AB2,AF=CF=,ADBC,AEF=EFC=AFE,AE=AF=,B

30、=BAD=AHF=90,四边形ABFH是矩形,AB=FH=6,AH=BF=,EH=,EF=,故答案为:;(3)如图,过点A作ANBC,交CB的延长线于N,过点F作FMAD于M,四边形ABCD是平行四边形,C=45,ABC=135,ABN=45,ANBC,ABN=BAN=45,AN=BN=AB=1,将ABCD沿EF翻折,使点C的对称点与点A重合,AF=CF,AFE=EFC,ADBC,AEF=EFC=AFE,AE=AF,AF2=AN2+NF2,AF2=1+(3AF)2,AF=,AE=AF=,四边形的面积是:;故答案为:【点睛】本题是四边形综合题,考查了平行四边形的性质,菱形的性质,折叠的性质,全等

31、三角形的判定和性质,勾股定理等知识,添加恰当辅助线构造直角三角形是本题的关键24(1)-1;(2)证明见详解;(3)(,)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)根据平行的性质:内错角相等,证明OCB=OBC,由等角解析:(1)-1;(2)证明见详解;(3)(,)【解析】【分析】(1)把P(3,4),b=7代入y=kx+b中,可得k=-1(2)根据平行的性质:内错角相等,证明OCB=OBC,由等角对等边得到是等腰三角形根据坐标证明P是BC的中点,由等腰三角形三线合一性质得OPBC,求出OP函数关系式中k的值,根据两个一次函数图像互相垂直时k的关系,求解

32、出直线BC的表达式中的k=(3)根据动点M的运动情况分析出N的轨迹函数,然后证明OHG是等腰直角三角形,根据中点坐标公式求得直线OP的表达式,联立方程求出N点坐标【详解】(1)把P(3,4),b=7代入y=kx+b中,可得4=3k+7解得k=-1故答案为-1(2)ABy轴ABCOCBBP平分OBAOBC=ABCOCB=OBC是等腰三角形如图4所示,连接OPAB/y轴,A(6,t)B点横坐标是6P横坐标是3P是BC的中点OPBC设直线OP的表达式为y=kx将P(3,4)代入得4=3k解得k= ,则设直线BC的表达式中的k=.故答案为.(3)如图5-1,当点M与O重合时,作PEy轴于点E,作NFy

33、轴于点FPMNMPMN=90PME+NMF=90FMN+FNM=90PME=MNF在PEMMFN中PEOOFN(AAS)MF=PE=3,FN=ME=4则N点的坐标为(4,-3)如图5-2所示,,当PMx轴时,N点在x轴上,则MN=PM=3,ON=OM+MN=7,N的坐标为(7,0)综上所述得点N在直线y=x-7的直线上运动设直线y=x-7与坐标轴分别交于点G、H,作O关于直线HG的对称点O,连接OP交直线HG于点N,此时ON+PN有最小值,最小值为线段OP的长度.如图5-3所示.当直线y=x-7可得H(0,-7),G(7,0),OG=OH,OHG是等腰直角三角形,当OQHG时,Q是HG的中点,

34、由中点坐标公式可得Q(,-),O与O对称Q是OO的中点由中点坐标公式可得O(7,-7),可得直线OP的表达式为联立方程,解得N点坐标为(,)当OPN周长最小时,点N的坐标为(,)故答案为(,)【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、角平分线的性质,平行的性质等,熟练掌握数形结合的解题方法是解决此题目的关键,综合性强,难度较大25(1);(2);(3)【分析】(1)利用勾股定理即可求出.(2)过点F作FHAD交AD于的延长线于点H,作FMAB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得.(3)分解析:(1);(2);(3)【分析】(1)利用勾股定理即可求出.(2

35、)过点F作FHAD交AD于的延长线于点H,作FMAB于点M,证出,进而求得MF,BM的长,再利用勾股定理,即可求得.(3)分两种情况讨论,同(2)证得三角形全等,再利用勾股定理即可求得.【详解】(1)由勾股定理得: (2)过点F作FHAD交AD于的延长线于点H,作FMAB于点M,如图2所示:则FM=AH,AM=FH四边形CEFG是正方形 EC=EF,FEC=90 DEC+FEH=90,又四边形是正方形 ADC=90 DEC+ECD=90,ECD=FEH又EDC=FHE=90, FH=ED EH=CD=3AD=3,AE=1,ED=AD-AE=3-1=2,FH=ED=2MF=AH=1+3=4,MB

36、=FH+CD=2+3=5在RtBFM中,BF= (3)分两种情况:当点E在边AD的左侧时,过点F作FMBC交BC的反向延长线于点M,交DE于点N.如图3所示:同(2)得: EN=CD=3,FN=ED=7AE=4AN=AE-EN=4-3=1MB=AN=1 FM=FN+NM=7+3=10在中由勾股定理得: 当点E在边AD的右侧时,过点F作FNAD交AD的延长线于点N,交BC延长线于M,如图4所示:同理得: NF=DE=1,EN=CD=3FM=3-1=2,CM=DN=DE+EN=1+3=4BM=CB+CM=3+4=7在中由勾股定理得: 故BF的长为【点睛】本题为考查三角形全等和勾股定理的综合题,难点

37、在于根据E点位置的变化,画出图形,注意(3)分情况讨论,难度较大,属压轴题,熟练掌握三角形全等的性质和判定以及勾股定理的运用是解题关键.26(1)5;(2)秒时,ABPDCE;(3)当秒或秒时,PDE是直角三角形;(4)当秒或秒或秒时,PDE为等腰三角形【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根据全解析:(1)5;(2)秒时,;(3)当秒或秒时,是直角三角形;(4)当秒或秒或秒时,为等腰三角形【分析】(1)根据长方形的性质及勾股定理直接求解即可;(2)根据全等三角形的性质可得:,即可求出时间t;(3)分两种情况讨论:当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系

38、求解即可;当时,此时点P与点C重合,得出,即可计算t的值;(4)分三种情况讨论:当时,当时,当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得【详解】解:(1)四边形ABCD为长方形,在中,故答案为:5;(2)如图所示:当点P到如图所示位置时,仅有如图所示一种情况,此时,秒时,;(3)当时,如图所示:在中,在中,解得:;当时,此时点P与点C重合,;综上可得:当秒或秒时,是直角三角形;(4)若为等腰三角形,分三种情况讨论:当时,如图所示:,;当时,如图所示:,;当时,如图所示:,在中,即,解得:,;综上可得:当秒或秒或秒时,为等腰三角形【点睛】题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服