资源描述
人教版八年级上学期压轴题强化数学质量检测试题带答案
1.如图1,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP.
(1)在图1中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将三角板△EFP沿直线l向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;
(3)将三角板△EFP沿直线l向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.
2.阅读理解题:
定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a,b为实数)的数叫做复数,其中a叫这个复数的实部,b叫做这个复数的虚部,它的加、减、乘、除运算与代数式的运算类似.
例如:计算:(2﹣i)+(5+3i)=(2+5)+(﹣1+3)i=7+2i;
(1+i)×(2﹣i)=1×2﹣i+2×i﹣i2=2+(﹣1+2)i+1=3+i;
根据以上信息,完成下列问题:
(1)填空:i3= ,i4= ,i+i2+i3+…+i2021= ;
(2)计算:(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i);
(3)已知a+bi=(a,b为实数),求的最小值.
3.如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为.
(1)求的取值范围.
(2)当时,问与是否全等,并说明理由.
(3)时,若为等腰三角形,求的值.
4.如图,△ABC是等边三角形,点D、E分别是射线AB、射线CB上的动点,点D从点A出发沿射线AB移动,点E从点B出发沿BG移动,点D、点E同时出发并且运动速度相同.连接CD、DE.
(1)如图①,当点D移动到线段AB的中点时,求证:DE=DC.
(2)如图②,当点D在线段AB上移动但不是中点时,试探索DE与DC之间的数量关系,并说明理由.
(3)如图③,当点D移动到线段AB的延长线上,并且ED⊥DC时,求∠DEC度数.
5.如图,在△ABC中,点D为直线BC上一动点,∠DAE=90°,AD=AE.
(1)如果∠BAC=90°,AB=AC.
①如图1,当点D在线段BC上时,线段CE与BD的位置关系为__________,数量关系为__________;
②如图2,当点D在线段BC的延长线上时,①中的结论是否仍然成立?请说明理由;
(2)如图3,若△ABC是锐角三角形,∠ACB=45°,当点D在线段BC上运动时,证明:CE⊥BD.
6.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F.
(1)如图1,连CF,求证:△ACF≌△AEF.
(2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明.
(3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果).
7.如图,和中,,,,边与边交于点(不与点,重合),点,在异侧,为与的角平分线的交点.
(1)求证:;
(2)设,请用含的式子表示,并求的最大值;
(3)当时,的取值范围为,求出,的值.
8.如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.
(1)求证:△AOB≌△COD;
(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;
(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.
【参考答案】
2.(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析.
【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;
(2
解析:(1)AB=AP,AB⊥AP;(2)BQ=AP,BQ⊥AP;(3)成立,见解析.
【分析】(1)根据等腰直角三角形性质得出AB=AP,∠BAC=∠PAC=45°,求出∠BAP=90°即可;
(2)求出CQ=CP,根据SAS证△BCQ≌△ACP,推出AP=BQ,∠CBQ=∠PAC,根据三角形内角和定理求出∠CBQ+∠BQC=90°,推出∠PAC+∠AQG=90°,求出∠AGQ=90°即可;
(3)BO与AP所满足的数量关系为相等,位置关系为垂直.证明方法与(2)一样.
【详解】(1)AB=AP且AB⊥AP,
证明:∵AC⊥BC且AC=BC,
∴△ABC为等腰直角三角形,
∴∠BAC=∠ABC=,
又∵△ABC与△EFP全等,
同理可证∠PEF=45°,
∴∠BAP=45°+45°=90°,
∴AB=AP且AB⊥AP;
(2)BQ与AP所满足的数量关系是AP=BQ,位置关系是AP⊥BQ,
证明:延长BQ交AP于G,
由(1)知,∠EPF=45°,∠ACP=90°,
∴∠PQC=45°=∠QPC,
∴CQ=CP,
∵∠ACB=∠ACP=90°,AC=BC,
∴在△BCQ和△ACP中
∴△BCQ≌△ACP(SAS),
∴AP=BQ,∠CBQ=∠PAC,
∵∠ACB=90°,
∴∠CBQ+∠BQC=90°,
∵∠CQB=∠AQG,
∴∠AQG+∠PAC=90°,
∴∠AGQ=180°-90°=90°,
∴AP⊥BQ;
(3)成立.
证明:如图,∵∠EPF=45°,
∴∠CPQ=45°.
∵AC⊥BC,
∴∠CQP=∠CPQ,
CQ=CP.
在Rt△BCQ和Rt△ACP中,
∴Rt△BCQ≌Rt△ACP(SAS)
∴BQ=AP;
延长BQ交AP于点N,
∴∠PBN=∠CBQ.
∵Rt△BCQ≌Rt△ACP,
∴∠BQC=∠APC.
在Rt△BCQ中,∠BQC+∠CBQ=90°,
∴∠APC+∠PBN=90°.
∴∠PNB=90°.
∴BQ⊥AP.
【点睛】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质.
3.(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.
【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;
(2)根据多项式乘法法则进行计算,及题目所给已知条
解析:(1)﹣i,1,;(2)﹣i﹣6;(3)的最小值为25.
【分析】(1)根据题目所给条件可得i3=i2•i,i4=i2•i2计算即可得出答案;
(2)根据多项式乘法法则进行计算,及题目所给已知条件即可得出答案;
(3)根据题目已知条件,a+bi=4+3i,求出a、b,即可得出答案.
【详解】(1)i3=i2•i=﹣1×i=﹣i,
i4=i2•i2=﹣1×(﹣1)=1,
设S=i+i2+i3+…+i2021,
iS=i2+i3+…+i2021+i2022,
∴(1﹣i)S=i﹣i2022,
∴S=,
故答案为﹣i,1,;
(2)(1+i)×(3﹣4i)﹣(﹣2+3i)(﹣2﹣3i)
=3﹣4i+3i﹣4i2﹣(4﹣9i2)
=3﹣i+4﹣4﹣9
=﹣i﹣6;
(3)a+bi====4+3i,
∴a=4,b=3,
∴=,
∴的最小值可以看作点(x,0)到点A(0,4),B(24,3)的最小距离,
∵点A(0,4)关于x轴对称的点为A'(0,﹣4),连接A'B即为最短距离,
∴A'B==25,
∴的最小值为25.
【点睛】此题考查了实数的运算,以及规律型:数字的变化类,弄清题中的新定义是解本题的关键.
4.(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形
【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;
(2)根据题意利用全等三角形的判定定理(SAS),进行
解析:(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形
【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;
(2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可;
(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.
【详解】(1)依题意,
,
.
(2)时,与全等,
证明:时,,,在和中,
∵,,点是的中点,
,,,
(SAS).
(3)①当时,有;
②当时,
∵,
∴,
∴
有,
∵,
∴(舍去);
③当时,
∵,
∴,
∴
有,
∴;
综上,当或时,为等腰三角形.
【点睛】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及相似三角形的判定与性质并运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.
5.(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用
解析:(1)见详解;
(2)DE=DC,理由见详解;
(3)∠DEC=45°
【分析】(1)由题意可知,所以,由等边三角形及中点可知,而,所以可证,进一步可证
(2)猜测,寻找条件证明即可.最常用的是证明两个三角形全等,但图中给出的三角形中并未出现全等三角形,所以添加辅助线:在射线AB上截取,这样只要证明即可.利用等边三角形的性质及可知为等边三角形,这样通过两个等边三角形即可证明.
(3)按照第(2)问的思路,作出类似的辅助线:在射线CB上截取,用同样的方法证明,又因为ED⊥DC,所以为等腰之间三角形,则∠DEC度数可求.
【详解】由题意可知
∵D为AB的中点
∵为等边三角形,
(2)
理由如下:
在射线AB上截取,连接EF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
(3)如图,在射线CB上截取,连接DF
∵为等边三角形
∴为等边三角形
由题意知
即
在和中,
∵ED⊥DC
∴为等腰直角三角形
【点睛】本题主要考查了等腰三角形,等边三角形,全等三角形的判定及性质,能够作出辅助线,并合理利用等边三角形的性质是解题的关键.
6.(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角
解析:(1)①CE⊥BD;CE=BD;②结论仍成立,理由见解析;
(2)证明见解析.
【分析】(1)①根据∠BAD=∠CAE,BA=CA,AD=AE,运用“SAS”证明△ABD≌△ACE,根据全等三角形性质得出对应边相等,对应角相等,即可得到线段CE、BD之间的关系;
②先根据“SAS”证明△ABD≌△ACE,再根据全等三角形性质得出对应边相等,对应角相等,即可得到①中的结论仍然成立;
(2)先过点A作AG⊥AC交BC于点G,画出符合要求的图形,再结合图形判定△GAD≌△CAE,得出对应角相等,即可得出结论.
(1)
①∵∠BAD=90°-∠DAC,∠CAE=90°-∠DAC,
∴∠BAD=∠CAE.
又 BA=CA,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ACE=∠B=45°,CE=BD.
∵∠ACB=∠B=45°,
∴∠ECB=45°+45°=90°,
即 CE⊥BD.
故答案为:CE⊥BD;CE=BD.
②当点D在BC的延长线上时,①的结论仍成立.
∵∠DAE=90°,∠BAC=90°,
∴∠DAE=∠BAC,
∴∠DAB=∠EAC,
又AB=AC,AD=AE,
∴△DAB≌△EAC(SAS),
∴CE=BD,∠ACE=∠ABD.
∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即 CE⊥BD;
(2)
证明:过点A作AG⊥AC交BC于点G,
∵∠ACB=45°,
∴∠AGC=45°,
∴AC=AG,
即△ACG是等腰直角三角形,
∵∠GAD+∠DAC=90°=∠CAE+∠DAC,
∴∠GAD=∠CAE,
又∵DA=EA,
∴△GAD≌△CAE(SAS),
∴∠ACE=∠AGD=45°,
∴∠BCE=∠ACB+∠ACE=90°,
即CE⊥BD.
【点睛】此题为三角形综合题,主要考查了全等三角形的判定与性质及等腰直角三角形的性质,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应边相等,对应角相等进行求解.
7.(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由
解析:(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出;
(3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出.
(1)
∵AF平分∠CAE,
∴.
∵AB=AC,AB=AE,
∴AC =AE.
又∵AF=AF,
∴.
(2)
证明:∵,
∴,.
如图,在BE上截取BM=CF,连接AM.
在和中,,
∴,
∴,.
∵,,
∴为等边三角形,
∴.
∵,
∴,即,
∴为等边三角形,
∴,
∴.
即AF,EF,BF之间存在的关系为:;
(3)
如图,延长BA,CF交于点N.
∵,,
∴为等腰直角三角形,
∴,.
∵AE∥BC,
∴.
∵,
∴,
∴.
由(1)可知,
∴,
∴,即.
∵为的角平分线,
∴.
∵,
∴,即.
在和中,,
∴,
∴.
故答案为:6.
【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题.
8.(1)见解析
(2),3
(3)m=105,n=150
【分析】(1)由条件易证,得,即可得证.
(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥
解析:(1)见解析
(2),3
(3)m=105,n=150
【分析】(1)由条件易证,得,即可得证.
(2)PD=AD-AP=6-x,点P在线段BC上且不与B、C重合时, AP有最小值,即AD⊥BC时AP的长度,此时PD可得最大值.
(3)为与的角平分线的交点,应用“三角形内角和等于180°”及角平分线定义,即可表示出,从而得到m,n的值.
(1)
解:在和中,如图1
即
(2)
解:
当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值
(3)
解:如图2,设则
为与的角平分线的交点
即
【点睛】本题是一道几何综合题,考查了点到直线的距离垂线段最短,30°的角所对的直角边等于斜边的一半,全等三角形的判定和性质,角平分线定义等,解题关键是将PD最大值转化为PA的最小值.
9.(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延
解析:(1)见解析;(2)见解析;(3)见解析
【分析】(1)根据即可证明;
(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;
(3)延长到,使,连接,,延长交于点,根据证明,得出,,故,由平行线的性质得出,进而推出,根据证明,故,,即可证明.
【详解】(1)轴于点,轴于点,
,
,,
,,
;
(2)
如图2,过点作轴,交于点,
,
,
轴,
,
,
,
,,,
,
在与中,
,
,
,即点为中点;
(3)
如图3,延长到,使,连接,,延长交于点,
,,,
,
,,
,
,
,
,
,
,,
,
,
,
,
,,
,
,即.
【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.
展开阅读全文