1、人教版中学七年级下册数学期末复习(含解析)一、选择题1的平方根是()A7B7CD2下列图案中,是通过下图平移得到的是( )ABCD3在平面直角坐标系中,点A(m,n)经过平移后得到的对应点A(m+3,n4)在第二象限,则点A所在的象限是()A第一象限B第二象限C第三象限D第四象限4下列命题:过直线外一点有且只有一条直线与已知直线平行;在同一平面内,过一点有且只有一条直线与已知直线垂直;图形平移的方向一定是水平的;内错角相等其中真命题为( )ABCD5将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( )ABCD6下列说法中,正确的是()A(2)3的立方根是2B0.4的算术平
2、方根是0.2C的立方根是4D16的平方根是47如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系上有个点P(1,0),点P第1次向上平移1个单位至点P1(1,1),紧接着第2次向左平移2个单位至点P2(1,1),第3次向上平移1个单位到达P3(1,2),第4次向右平移3个单位到达P4(2,2),第5次又向上平移1个单位,第6次向左平移4个单位,依此规律平移下去,点P2021的坐标为()A(506,1011)B(506,506)C(506,1011)D(506,506)九、填空题9_十、填空题10已知点
3、关于轴的对称点为,关于轴的对称点为,那么点的坐标是_十一、填空题11如图,ABC的角平分线CD、BE相交于F,A90,EGBC,且CGEG于G,下列结论:CEG2DCB;BFD45;ADCGCD;CA平分BCG其中正确的结论是_(填序号)十二、填空题12如图,直线ab,直角三角形的直角顶点在直线b上,已知1=48,则2的度数是_度十三、填空题13将长方形纸带沿EF折叠(如图1)交BF于点G,再将四边形EDCF沿BF折叠,得到四边形,EF与交于点O(如图2),最后将四边形沿直线AE折叠(如图3),使得A、E、Q、H四点在同一条直线上,且恰好落在BF上若在折叠的过程中,且,则_十四、填空题14对于
4、任意有理数a,b,规定一种新的运算aba(a+b)1,例如,252(2+5)113则(2)6的值为_十五、填空题15若点P(a+3,2a+4)在y轴上,则点P到x轴的距离为_十六、填空题16育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2第n次移动到点An,则OA2A2021的面积是 _十七、解答题17计算:(1);(2)十八、解答题18求下列各式中x的值(1)4x264;(2)3(x1)3+240十九、解答题19阅读
5、下列推理过程,在括号中填写理由已知:如图,点、分别是线段、上的点,平分,交于点求证:平分证明:平分(已知)( )(已知)( )( )(等量代换)( )( )( )( )平分( )二十、解答题20如图,在平面直角坐标系中,已知P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点为P1(a+6,b+2)(1)请画出上述平移后的A1B1C1,并写出点A1,C1的坐标;(2)写出平移的过程;(3)求出以A,C,A1,C1为顶点的四边形的面积二十一、解答题21阅读下面的文字,解答问题大家知道是无理数,面无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于,所以的整数部分为1.
6、将减去其整数部分1,差就是小数部分.根据以上的内容,解答下面的问题:(1)的整数部分是_,小数部分是_;(2)若设整数部分是,小数部分是,求的值.二十二、解答题22如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长二十三、解答题23如图,将一张长方形纸片沿对折,使落在的位置;(1)若的度数为,试求的度数(用含的代数式表示);(2)如图,再将纸片沿对折,使得落在的位置若,的度数为,试求的度数(用含的代数式表示);若,的度数比的度数大,试计算的度数二十四、解答题24如图,两个形状,大小完全相同的含有30、60的三角板如图放置,P
7、A、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转(1)如图1,DPC 度我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10逆时针旋转一周(0旋转360),问旋转时间t为多少时,这两个三角形是“孪生三角形”(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动)设两个三角板旋转时间为t秒,以下两个结论:为定值;BPN+CPD为定
8、值,请选择你认为对的结论加以证明二十五、解答题25如图1,已知ABCD,BE平分ABD,DE平分BDC(1)求证:BED90;(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,EDF,ABF的角平分线与CDF的角平分线DG交于点G,试用含的式子表示BGD的大小;(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,EBM的角平分线与FDN的角平分线交于点G,探究BGD与BFD之间的数量关系,请直接写出结论:【参考答案】一、选择题1C解析:C【分析】根据一个正数有两个平方根,它们互为相反数解答即可【详解】,7的平方根是,的平方根是故选:C【点睛】本题考查了平方根的概念,掌握一个正
9、数有两个平方根,它们互为相反数;0的平方根是0,解题关键是先求出49的算术平方根2C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变解析:C【分析】根据平移的性质,即可解答【详解】由平移的性质可知C选项符合题意,A、B、D选项需要通过旋转才能实现故选C【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,掌握平移的性质是解题的关键3B【分析】构建不等式求出m,n的范围可得结论【详解】解:由题意,解得:,A(m,n)在第二象限,故选:B【
10、点睛】此题主要考查坐标与图形变化-平移解题的关键是理解题意,学会构建不等式解决问题4A【分析】根据两直线的位置关系即可判断.【详解】过直线外一点有且只有一条直线与已知直线平行,正确;在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;图形平移的方向不一定是水平的,故错误;两直线平行,内错角才相等,故错误故正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5B【分析】根据平行可得出DAB+CBA=180,再根据折叠和平角定义可求出【详解】解:由翻折可知,DAE=2,CBF=2,,DAB+CBA=180,DAE+CBF=180,即,故选:B【点睛】本题考查
11、了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算6A【分析】根据立方根的定义及平方根的定义依次判断即可得到答案【详解】解:A(2)3的立方根是2,故本选项符合题意;B.0.04的算术平方根是0.2,故本选项不符合题意;C. 的立方根是2,故本选项不符合题意;D.16的平方根是4,故本选项不符合题意;故选:A【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=1
12、80-3=180-110=70,HF平分EFD,DFH=DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8A【分析】通过观察前面几次点的坐标,找到规律,即可求解【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(1,1),P3(1,2),P4(2,2),P5(解析:A【分析】通过观察前面几次点的坐标,找到规律,即可求解【详解】解:设第n次平移至点Pn,观察发现:P(1,0),P1(1,1),P2(1,1),P3(1,2),P4(2,2),P5(2,3),
13、P6(2,3),P7(2,4),P8(3,4),P9(3,5),P4n(n+1,2n),P4n+1(n+1,2n+1),P4n+2(n1,2n+1),P4n+3(n1,2n+2)(n为自然数)20215054+1,P2021(505+1,5052+1),即(506,1011)故选:A【点睛】此题主要考查了探索坐标系中点的规律,理解题意找到点的运动规律是解题的关键九、填空题96【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键解析:6【分析】根据算术平方根、有理数的乘方运算即可得【详解】故答案为:6【点睛】本
14、题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键十、填空题10【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:【分析】根据点坐标关于坐标轴的对称规律即可得【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴的对称点为,则点P的纵坐标为1点关于轴的对称点为,则点P的横坐标为2则点P的坐标为故答案为:【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称
15、规律是解题关键十一、填空题11【分析】由EGBC,且CGEG于G,可得GECBCA,由CD平分BCA,可得GECBCA2DCB,可判定;由CD,BE平分BCA,ABC,根据外角性质可得B解析:【分析】由EGBC,且CGEG于G,可得GECBCA,由CD平分BCA,可得GECBCA2DCB,可判定;由CD,BE平分BCA,ABC,根据外角性质可得BFDBCF+CBF45,可判定;根据同角的余角性质可得GCEABC,由角的和差GCDABC+ACD=ADC,可判定;由GCE+ACB90,可得GCE与ACB互余,可得CA平分BCG不正确,可判定【详解】解:EGBC,且CGEG于G,BCG+G180,G
16、90,BCG180G90,GEBC,GECBCA,CD平分BCA,GECBCA2DCB,正确CD,BE平分BCA,ABCBFDBCF+CBF(BCA+ABC)45,正确GCE+ACB90,ABC+ACB90,GCEABC,GCDGCE+ACDABC+ACD,ADCABC+BCD,ADCGCD,正确GCE+ACB90,GCE与ACB互余,CA平分BCG不正确,错误故答案为:【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键十二、填空题1242【分析】利用平行线的性质,平角的性质解决问题即可【详解】解:4=90,1=48,3
17、=90-1=42,ab,2=3=42,故答案为:42【点解析:42【分析】利用平行线的性质,平角的性质解决问题即可【详解】解:4=90,1=48,3=90-1=42,ab,2=3=42,故答案为:42【点睛】本题考查了平行线的性质,平角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型十三、填空题1332【分析】连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,A、E、Q、H在同一直线上解析:32【分析】连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:
18、如图所示,连接EQ,A、E、Q、H在同一直线上,=90=180-90-26=64由折叠的性质可知:=32故答案为:32.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,解析:-9【分析】直接利用已知运算法则计算得出答案【详解】(2)62(2+6)1241819故答案为9【点睛】此题考察新定义形式的有理数计算,正确理解题意是解题的关键,依据题意正确列代数式计算即可.十五、填空题152【分析】点在y轴上,
19、则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可【详解】点P(a+3,2a+4)在y轴上a+3=0,解得:a=3P(0,2)点P到x轴的距离解析:2【分析】点在y轴上,则横坐标为0,可求得a的值,然后再判断点到x轴的距离即可【详解】点P(a+3,2a+4)在y轴上a+3=0,解得:a=3P(0,2)点P到x轴的距离为:2故答案为:2【点睛】本题考查坐标点与坐标轴的关系,注意,点到坐标轴的距离一定是非负的十六、填空题16【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运
20、动4次一个循环解析:【分析】由题意知OA4n2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题【详解】解:由题意知OA4n2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2202145051,A2021与A1是对应点,A2020与A0是对应点OA202050521010,A1A20211010A2A20211010-1=1009则OA2A2019的面积是11009,故答案为:【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得十七、解答题17(1)0.5;(2)4【分析】(1)
21、根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:(1);(2)【点睛】本题考查实数解析:(1)0.5;(2)4【分析】(1)根据立方根,算术平方根的定义对各项进行化简,最后相加减即可;(2)根据实数的混合运算法则进行求解【详解】解:(1);(2)【点睛】本题考查实数的运算,熟练掌握立方根,算术平方根的定义是解题的关键十八、解答题18(1)x=4;(2)x=-1【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)解析:(1)x=4;(2)x=-1
22、【分析】(1)根据平方根的定义解方程即可;(2)根据立方根的定义解方程即可【详解】解:(1)4x2=64,x2=16,x=4;(2)3(x-1)3+24=0,3(x-1)3=-24,(x-1)3=-8,x-1=-2,x=-1【点睛】本题主要考查了平方根和立方根,解题时注意一个正数的平方根有两个,不要漏解十九、解答题19见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(解析:见解析【分析】根据平行线的性质,角平分线的定义填写理由即可【详解】证明:平分(已知)(角平分线的定
23、义)(已知)(同位角相等,两直线平行)(两直线平行,内错角相等)(等量代换)(已知)(两直线平行,同位角相等)(两直线平行,内错角相等)(等量代换)平分(角平分线的定义)【点睛】本题考查了角平分线的定义,平行线的性质与判定,掌握平行线的性质与判定是解题的关键二十、解答题20(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14【分析】(1)根据点P的对应点P1(a+6,b+2)可分别解析:(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为1
24、4【分析】(1)根据点P的对应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积【详解】解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象:由图象可得;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)连接,如图所示:点,点在同一条直线上,且与x轴平行,【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键二十一、解答题21(1)2,;(2)【分析】(1)利用求解;(2)由于,则,然后计算【详解】解:(1)
25、的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,【点睛】本题考查了解析:(1)2,;(2)【分析】(1)利用求解;(2)由于,则,然后计算【详解】解:(1)的整数部分是2,小数部分是;(2),而整数部分是,小数部分是,【点睛】本题考查了估算无理数的大小,熟悉相关性质是解题得关键二十二、解答题22正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形
26、的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,答:正方形纸板的边长是18厘米【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式二十三、解答题23(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义解析:(1) ;(2) ;【分析】(1)由平行线的性质得到,由折叠的性质可知,2=BFE,再根据平角的定义求解即可;(2) 由(1)知,根据平行线的性质得到 ,再由折叠的性质及平角的定义求解即可;由(1)知,BFE = ,由可知:,
27、再根据条件和折叠的性质得到,即可求解【详解】解:(1)如图,由题意可知,由折叠可知(2)由题(1)可知 ,再由折叠可知:,;由可知:,由(1)知,又的度数比的度数大,【点睛】此题考查了平行线的性质,属于综合题,有一定难度,熟记“两直线平行,同位角相等”、“两直线平行,内错角相等”及折叠的性质是解题的关键二十四、解答题24(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和解析:(1)90;t为或或或或或或;(2)正确,错误,证明见解析【分析】(1)由平角的定义,结合已
28、知条件可得:从而可得答案;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当时的旋转时间与相同;(2)分两种情况讨论:当在上方时,当在下方时,分别用含的代数式表示,从而可得的值;分别用含的代数式表示,得到是一个含的代数式,从而可得答案【详解】解:(1)DPC180CPADPB,CPA60
29、,DPB30,DPC180306090,故答案为90;如图11,当BDPC时,PCBD,DBP90,CPNDBP90,CPA60,APN30,转速为10/秒,旋转时间为3秒;如图12,当PCBD时,PBD90,CPBDBP90,CPA60,APM30,三角板PAC绕点P逆时针旋转的角度为180+30210,转速为10/秒,旋转时间为21秒,如图13,当PABD时,即点D与点C重合,此时ACPBPD30,则ACBP,PABD,DBPAPN90,三角板PAC绕点P逆时针旋转的角度为90,转速为10/秒,旋转时间为9秒,如图14,当PABD时,DPBACP30,ACBP,PABD,DBPBPA90,
30、三角板PAC绕点P逆时针旋转的角度为90+180270,转速为10/秒,旋转时间为27秒,如图15,当ACDP时,ACDP,CDPC30,APN18030306060,三角板PAC绕点P逆时针旋转的角度为60,转速为10/秒,旋转时间为6秒,如图16,当时, 三角板PAC绕点P逆时针旋转的角度为转速为10/秒,旋转时间为秒,如图17,当ACBD时,ACBD,DBPBAC90,点A在MN上,三角板PAC绕点P逆时针旋转的角度为180,转速为10/秒,旋转时间为18秒,当时,如图1-3,1-4,旋转时间分别为:, 综上所述:当t为或或或或或或时,这两个三角形是“孪生三角形”;(2)如图,当在上方时
31、,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM302t,APN3tCPD180DPMCPAAPN90t, BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误当在下方时,如图,正确,理由如下:设运动时间为t秒,则BPM2t,BPN1802t,DPM APN3tCPD BPN+CPD1802t+90t2703t,可以看出BPN+CPD随着时间在变化,不为定值,结论错误综上:正确,错误【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键二十五、解答题25(1
32、)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180解析:(1)见解析;(2)BGD;(3)2BGD+BFD360【分析】(1)根据角平分线的性质求出EBD+EDB(ABD+BDC),根据平行线的性质ABD+BDC180,从而根据BED180(EBD+EDB)即可得到答案;(2)过点G作GPAB,根据ABCD,得到GPABCD,从而得到BGDBGP+PGDABG+CDG,然后根据EBD+EDB90,ABD+BDC180,得到ABE+EDC90,即ABE+FDC90,再利用角平分线的定义求出
33、2ABG+2CDG90即可得到答案;(3)过点F、G分别作FMAB、GMAB,从而得到ABGMFNCD,得到BGDBGM+DGM4+6,根据BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),即可求解.【详解】解:(1)证明:BE平分ABD,EBDABD,DE平分BDC,EDBBDC,EBD+EDB(ABD+BDC),ABCD,ABD+BDC180,EBD+EDB90,BED180(EBD+EDB)90(2)解:如图2,由(1)知:EBD+EDB90,又ABD+BDC180,ABE+EDC90,即ABE+FDC90,BG平分ABE,DG平分CDF,ABE2ABG,CDF
34、2CDG,2ABG+2CDG90,过点G作GPAB,ABCD,GPABCDABGBGP,PGDCDG,BGDBGP+PGDABG+CDG;(3)如图,过点F、G分别作FNAB、GMAB,ABCD,ABGMFNCD,3BFN,5DFN,4BGM,6DGM,BFDBFN+DFN3+5,BGDBGM+DGM4+6,BG平分FBP,DG平分FDQ,4FBP(1803),6FDQ(1805),BFD+BGD3+5+4+6,3+5+(1803)+(1805),180+(3+5),180+BFD,整理得:2BGD+BFD360【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.