资源描述
人教版中学七年级下册数学期末综合复习
一、选择题
1.下列计算正确的是()
A. B. C.|﹣3|=﹣3 D.﹣32=9
2.在以下现象中,属于平移的是( )
①在荡秋千的小朋友的运动;②坐观光电梯上升的过程;③钟面上秒针的运动;④生产过程中传送带上的电视机的移动过程.
A.①② B.②④ C.②③ D.③④
3.点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列命题中,假命题是( )
A.对顶角相等
B.两直线平行,内错角相等
C.在同一平面内,垂直于同一直线的两直线平行
D.过一点有且只有一条直线与已知直线平行
5.如图,如果AB∥EF,EF∥CD,下列各式正确的是( )
A.∠1+∠2−∠3=90° B.∠1−∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3−∠1=180°
6.若,,,则a,b,c的大小关系是( )
A. B. C. D.
7.如图,直线l∥m,等腰Rt△ABC中,∠ACB=90°,直线l分别与AC、BC边交于点D、E,另一个顶点B在直线m上,若∠1=28°,则∠2=( )
A.75° B.73° C.62° D.17°
8.如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点……按此规律进行下去,该动点到达的点的坐标是( )
A. B. C. D.
九、填空题
9.正方形木块的面积为,则它的周长为____________.
十、填空题
10.在平面直角坐标系中,若点和点关于轴对称,则____.
十一、填空题
11.如图,在平面直角坐标系中,点,,三点的坐标分别是,,,过点作,交第一象限的角平分线于点,连接交轴于点.则点的坐标为______.
十二、填空题
12.如图,把一把直尺放在含度角的直角三角板上,量得,则的度数是_______.
十三、填空题
13.把一张长方形纸条按如图所示折叠后,若,则_______;
十四、填空题
14.现定义一种新运算:对任意有理数a、b,都有a⊗b=a2﹣b,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.
十五、填空题
15.在平面直角坐标系中,已知线段且轴,且点的坐标是则点的坐标是____.
十六、填空题
16.在平面直角坐标系中,已知点A(﹣4,0),B(0,3),对△AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______
十七、解答题
17.计算:
(1)3-(-5)+(-6)
(2)
十八、解答题
18.求下列各式中的x值.
(1)
(2)
十九、解答题
19.如图,∠1+∠2=180°,∠C=∠D.求证:ADBC.
证明:∵∠1+∠2=180°,∠2+∠AED=180°,
∴∠1=∠AED( ),
∴AC ( ),
∴∠D=∠DAF( ).
∵∠C=∠D,
∴∠DAF= (等量代换).
∴ADBC( ).
二十、解答题
20.在下图的直角坐标系中,将平移后得到,它们的各顶点坐标如下表所示:
(1)观察表中各对应点坐标的变化,并填空:向________平移________个单位长度,再向_______平移________个单位长度可以得到;
(2)在坐标系中画出及平移后的;
(3)求出的面积.
二十一、解答题
21.计算:
(1); (2)﹣12+(﹣2)3×;
(3)已知实数a、b满足+|b﹣1|=0,求a2017+b2018的值.
(4)已知+1的整数部分为a,﹣1的小数部分为b,求2a+3b的值.
二十二、解答题
22.(1)如图,分别把两个边长为的小正方形沿一条对角线裁成个小三角形拼成一个大正方形,则大正方形的边长为_______;
(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为,正方形的周长为,则_____(填“”或“”或“”号);
(3)如图,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?
二十三、解答题
23.已知AB∥CD,线段EF分别与AB,CD相交于点E,F.
(1)请在横线上填上合适的内容,完成下面的解答:
如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是 ;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是 ;
所以∠C=( ),
所以∠APC=( )+( )=∠A+∠C=97°.
(2)当点P,Q在线段EF上移动时(不包括E,F两点):
①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;
②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.
二十四、解答题
24.如图1,在平面直角坐标系中,,且满足,过作轴于
(1)求三角形的面积.
(2)发过作交轴于,且分别平分,如图2,若,求的度数.
(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由.
二十五、解答题
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
依据算术平方根、平方根的定义以及绝对值和有理数的乘方法则求解即可.
【详解】
解:A、,故A错误;
B、,故B正确;
C、|-3|=3,故C错误;
D、-32=-9,故D错误.
故选:B.
【点睛】
本题主要考查的是算术平方根的性质以及有理数的乘方,掌握相关知识是解题的关键.
2.B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
解析:B
【分析】
平移是指在平面内,将一个图形上的所有点都按照某个方向作相同距离的移动,这样的图形运动叫作图形的平移运动,简称平移.平移不改变图形的形状和大小.平移可以不是水平的.据此解答.
【详解】
①在荡秋千的小朋友的运动,不是平移;
②坐观光电梯上升的过程,是平移;
③钟面上秒针的运动,不是平移;
④生产过程中传送带上的电视机的移动过程.是平移;
故选:B.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.
3.C
【分析】
根据平面直角坐标系象限的符合特点可直接进行排除选项.
【详解】
解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限;
故选C.
【点睛】
本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.
4.D
【分析】
根据对顶角的定义、平行线的性质、平行公理及其推论可直接进行排除选项.
【详解】
解:A、对顶角相等,是真命题,故不符合题意;
B、两直线平行,内错角相等,是真命题,故不符合题意;
C、在同一平面内,垂直于同一直线的两直线平行,是真命题,故不符合题意;
D、过直线外一点有且只有一条直线与已知直线平行,所以原命题是假命题,故符合题意;
故选D.
【点睛】
本题主要考查命题、平行线的性质、平行公理及对顶角的定义,熟练掌握命题、平行线的性质、平行公理及对顶角的定义等相关知识点是解题的关键.
5.D
【分析】
根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.
【详解】
∵EF∥CD
∴∠3=∠COE
∴∠3−∠1=∠COE−∠1=∠BOE
∵AB∥EF
∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°
故选:D.
【点睛】
本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.
6.D
【分析】
根据乘方运算,可得平方根、立方根,根据绝对值,可得绝对值表示的数,根据正数大于负数,可得答案.
【详解】
解:∵,,,
∴,
故选:D.
【点睛】
本题考查了实数比较大小,先化简,再比较,解题的关键是掌握乘方运算,绝对值的化简.
7.B
【分析】
如图标注字母M,首先根据等腰直角三角形的性质得出,再利用平行线的性质即可得出∠2的度数.
【详解】
解:如图标注字母M,
∵△ABC是等腰直角三角形,
∴,
∴,
又∵l∥m,
∴,
故选:B.
【点睛】
本题主要考查等腰直角三角形的性质和平行线的性质,解题关键是熟练掌握等腰直角三角形的性质和平行线的性质.平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.
8.C
【分析】
求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.
【详解】
解:由题意A1(3,0
解析:C
【分析】
求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.
【详解】
解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,
可以看出,9=,15=,21=,
得到规律:点A2n+1的横坐标为,其中的偶数,
点A2n+1的纵坐标等于横坐标的相反数+3,
,即,
故A2021的横坐标为,A2021的纵坐标为,
∴A2021(3033,-3030),
故选:C.
【点睛】
本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.
九、填空题
9.【分析】
设正方形的边长为xm,则x2=5,根据平方根的定义求解可得.
【详解】
设正方形的边长为xm,
则x2=5,
所以x=或x=−(舍),
即正方形的边长为m,
所以周长为4cm
故答案为:
解析:
【分析】
设正方形的边长为xm,则x2=5,根据平方根的定义求解可得.
【详解】
设正方形的边长为xm,
则x2=5,
所以x=或x=−(舍),
即正方形的边长为m,
所以周长为4cm
故答案为:4.
【点睛】
本题主要考查算术平方根,解题的关键是掌握算术平方根的定义.
十、填空题
10.【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故
解析:
【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故答案为:.
【点睛】
本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.
十一、填空题
11.【分析】
设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E
解析:
【分析】
设D(x,y),由点在第一象限的角平分线上,可得,由待定系数法得直线AB的解析式为,由,可设,把代入, 得,进而可求得,再由待定系数法求得直线AD的解析式为,令x=0时,得,即可求得点E的坐标.
【详解】
解:设D(x,y),
点在第一象限的角平分线上,
,
,,
设直线AB的解析式为:,把,代入得: k=2,
,
,
把代入,得b=-1,
,
点D在上,
,
设直线AD的解析式为:,
可得, ,
,
当x=0时,,
,
故答案为:
【点睛】
此题考查了一次函数的性质,掌握待定系数法求一次函数的解析式是解答此题的关键.
十二、填空题
12.【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三
解析:
【分析】
由已知可知,由平行可知,根据三角形外角的性质可知从而求得的答案.
【详解】
已知可知
直尺的两边平行
故答案为:114°
【点睛】
本题考查了平行线的性质,三角形的外角性质,掌握三角形的外角性质是解题的关键.
十三、填空题
13.55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,
解析:55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,∠AOB′+∠BOG+∠B′OG=180°,
∴∠BOG+∠B′OG=180°-70°=110°.
∵∠B′OG由∠BOG翻折而成,
∴∠BOG=∠B′OG,
∴∠BOG= =55°.
∵AB∥CD,
∴∠OGD=∠BOG=55°.
故答案为:55°.
【点睛】
本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键.
十四、填空题
14.5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
解析:5
【解析】利用题中的新定义可得:2⊗(﹣1)=4﹣(﹣1)=4+1=5.
故答案为:5.
点睛:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
十五、填空题
15.或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点
解析:或
【分析】
设点B的坐标为,然后根据轴得出B点的纵坐标,再根据即可得出B点的横坐标.
【详解】
设点B的坐标为,
∵轴,点A(1,2)
∴B点的纵坐标也是2,即 .
∵,
或 ,
解得或 ,
∴点B的坐标为或.
故答案为:或.
【点睛】
本题主要考查平行于x轴的线段上的点的特点,掌握平行于x轴的线段上的点的特点是解题的关键.
十六、填空题
16.(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解
解析:(8052,0).
【分析】
观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可.
【详解】
解:∵点A(﹣4,0),B(0,3),
∴OA=4,OB=3,
∴AB==5,
∴第(3)个三角形的直角顶点的坐标是;
观察图形不难发现,每3个三角形为一个循环组依次循环,
∴一次循环横坐标增加12,
∵2013÷3=671
∴第(2013)个三角形是第671组的第三个直角三角形,
其直角顶点与第671组的第三个直角三角形顶点重合,
∴第(2013)个三角形的直角顶点的坐标是即.
故答案为:.
【点睛】
本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键.
十七、解答题
17.(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.
【详解】
(1)解:3-(-5)+(-6)
=3+5-6
解析:(1)2;(2)-1
【分析】
(1)利用加减法法则计算即可得到结果;
(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.
【详解】
(1)解:3-(-5)+(-6)
=3+5-6
=2
(2)解:(-1)2-
=1-4×
=1-2
=-1
【点睛】
此题考查了实数的运算,熟练掌握运算法则是解本题的关键.
十八、解答题
18.(1);(2)x=5.
【详解】
分析:(1)先移项,然后再求平方根即可;
(2)先求x-1立方根,再求x即可.
详解:(1),∴;
(2),∴x-1=4, ∴x=5.
点睛:本题考查了立方
解析:(1);(2)x=5.
【详解】
分析:(1)先移项,然后再求平方根即可;
(2)先求x-1立方根,再求x即可.
详解:(1),∴;
(2),∴x-1=4, ∴x=5.
点睛:本题考查了立方根和平方根的定义和性质,解题时牢记定义是关键,此题比较简单,易于掌握.
十九、解答题
19.同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
解析:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;∠C;同位角相等,两直线平行.
【分析】
根据平行线的判定和性质定理即可得到结论.
【详解】
证明:,,
(同角的补角相等),
(内错角相等,两直线平行),
(两直线平行,内错角相等),
,
(等量代换),
(同位角相等,两直线平行).
故答案为:同角的补角相等;DE;内错角相等,两直线平行;两直线平行,内错角相等;;同位角相等,两直线平行.
【点睛】
本题考查了平行线的判定与性质,熟记“内错角相等,两直线平行”、“同位角相等,两直线平行”及“两直线平行,内错角相等”是解题的关键.
二十、解答题
20.(1)上,2,右,4 ;(2)见解析;(3)7.5
【分析】
(1)利用根据A,B两点的坐标变化:A(a,0),A′(4,2);B(3,0),B′(7,b),即可得出A,B向上平移2个单位长度,再
解析:(1)上,2,右,4 ;(2)见解析;(3)7.5
【分析】
(1)利用根据A,B两点的坐标变化:A(a,0),A′(4,2);B(3,0),B′(7,b),即可得出A,B向上平移2个单位长度,再向右平移4 个单位长度,即可得出图形.
(2)根据(1)中图象变化,得出△A′B′C′;
(3)利用S△ABC=S△A′B′C′=AB×yc得出即可.
【详解】
解:(1)根据A,B两点的坐标变化:A(a,0),A′(4,2);B(3,0),B′(7,b);
△ABC向上平移2个单位长度,再向右平移4 个单位长度可以得到△A′B′C′;
(2)如图所示:
(3)S△ABC=S△A′B′C′=AB×yc=×3×5=7.5.
【点睛】
此题主要考查了图形的平移变换的性质与作法以及三角形面积求法,根据A,B两点坐标变化得出图象平移变化位置是解题关键.
二十一、解答题
21.(1)0;(2)-3;(3)2;(4).
【解析】
【分析】
直接利用算术平方根以及立方根的定义化简进而得出答案;
直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案
利用绝对值以及平
解析:(1)0;(2)-3;(3)2;(4).
【解析】
【分析】
直接利用算术平方根以及立方根的定义化简进而得出答案;
直接利用有理数的乘方、算术平方根以及立方根的定义化简进而得出答案
利用绝对值以及平方根的非负性质得出a,b的值,进而得出答案;
直接利用2<的范围进而得出a,b的值,即可得出答案.
【详解】
解:
;
;
,
,,
;
的整数部分为a,的小数部分为b,
,,
.
【点睛】
此题主要考查了估算无理数的大小以及实数运算,正确化简各数是解题关键.
二十二、解答题
22.(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形
解析:(1);(2);(3)不能裁剪出,详见解析
【分析】
(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;
(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;
(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;
【详解】
解:(1)∵小正方形的边长为1cm,
∴小正方形的面积为1cm2,
∴两个小正方形的面积之和为2cm2,
即所拼成的大正方形的面积为2 cm2,
∴大正方形的边长为cm,
(2)∵,
∴,
∴,
设正方形的边长为a
∵,
∴,
∴,
∴
故答案为:<;
(3)解:不能裁剪出,理由如下:
∵长方形纸片的长和宽之比为,
∴设长方形纸片的长为,宽为,
则,
整理得:,
∴,
∵450>400,
∴,
∴,
∴长方形纸片的长大于正方形的边长,
∴不能裁出这样的长方形纸片.
【点睛】
本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.
二十三、解答题
23.(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
解析:(1)两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由见解答过程;②3∠PMQ+∠A+∠C=360°.
【分析】
(1)根据平行线的判定与性质即可完成填空;
(2)结合(1)的辅助线方法即可完成证明;
(3)结合(1)(2)的方法,根据∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可证明∠PMQ,∠A与∠C的数量关系.
【详解】
解:过点P作直线PH∥AB,
所以∠A=∠APH,依据是两直线平行,内错角相等;
因为AB∥CD,PH∥AB,
所以PH∥CD,依据是平行于同一条直线的两条直线平行;
所以∠C=(∠CPH),
所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.
故答案为:两直线平行,内错角相等;平行于同一条直线的两条直线平行;∠CPH;∠APH,∠CPH;
(2)①如图2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:
过点P作直线PH∥AB,QG∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,
∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.
∴∠APQ+∠PQC=∠A+∠C+180°成立;
②如图3,
过点P作直线PH∥AB,QG∥AB,MN∥AB,
∵AB∥CD,
∴AB∥CD∥PH∥QG∥MN,
∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,
∴∠PMQ=∠HPM+∠GQM,
∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,
∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),
∴3∠PMQ+∠A+∠C=360°.
【点睛】
考核知识点:平行线的判定和性质.熟练运用平行线性质和判定,添加适当辅助线是关键.
二十四、解答题
24.(1)4;(2)45°;(3)P(0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出
解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)
【分析】
(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积=4;
(2)由于CB∥y轴,BD∥AC,则∠CAB=∠ABD,即∠3+∠4+∠5+∠6=90°,过E作EF∥AC,则BD∥AC∥EF,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED=∠1+∠2=×90°=45°;
(3)先根据待定系数法确定直线AC的解析式为y=x+1,则G点坐标为(0,1),然后利用S△PAC=S△APG+S△CPG进行计算.
【详解】
解:(1)由题意知:a=−b,a−b+4=0,
解得:a=−2,b=2,
∴ A(−2,0),B(2,0),C(2,2),
∴S△ABC=;
(2)∵CB∥y轴,BD∥AC,
∴∠CAB=∠ABD,
∴∠3+∠4+∠5+∠6=90°,
过E作EF∥AC,
∵BD∥AC,
∴BD∥AC∥EF,
∵AE,DE分别平分∠CAB,∠ODB,
∴∠3=∠4=∠1,∠5=∠6=∠2,
∴∠AED=∠1+∠2=×90°=45°;
(3)存在.理由如下:
设P点坐标为(0,t),直线AC的解析式为y=kx+b,
把A(−2,0)、C(2,2)代入得:
,解得,
∴直线AC的解析式为y=x+1,
∴G点坐标为(0,1),
∴S△PAC=S△APG+S△CPG=|t−1|•2+|t−1|•2=4,解得t=3或−1,
∴P点坐标为(0,3)或(0,−1).
【点睛】
本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.
二十五、解答题
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
展开阅读全文