收藏 分销(赏)

2022-2023学年江西省吉安八中学数学九年级第一学期期末学业质量监测试题含解析.doc

上传人:天**** 文档编号:1887089 上传时间:2024-05-11 格式:DOC 页数:21 大小:1.29MB
下载 相关 举报
2022-2023学年江西省吉安八中学数学九年级第一学期期末学业质量监测试题含解析.doc_第1页
第1页 / 共21页
2022-2023学年江西省吉安八中学数学九年级第一学期期末学业质量监测试题含解析.doc_第2页
第2页 / 共21页
2022-2023学年江西省吉安八中学数学九年级第一学期期末学业质量监测试题含解析.doc_第3页
第3页 / 共21页
2022-2023学年江西省吉安八中学数学九年级第一学期期末学业质量监测试题含解析.doc_第4页
第4页 / 共21页
2022-2023学年江西省吉安八中学数学九年级第一学期期末学业质量监测试题含解析.doc_第5页
第5页 / 共21页
点击查看更多>>
资源描述

1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()A1个B2个C3个D4个2如图,为外一点,分别切于点切于点且分别交于点,若,则的周长为( )ABCD3如图,若点P

2、在反比例函数y=(k0)的图象上,过点P作PMx轴于点M,PNy轴于点N,若矩形PMON的面积为6,则k的值是( )A-3B3C-6D64二次函数的图象与轴有且只有一个交点,则的值为( )A1或3B5或3C5或3D1或35下图中几何体的左视图是( )ABCD6如图,在O中,点A、B、C在O上,且ACB110,则( )A70B110C120D1407已知函数的图象与x轴有交点则的取值范围是( )Ak4Bk4Ck”或“”或“=”)12如图,矩形ABCD中,AB4,BC6,E是边AD的中点,将ABE折叠后得到ABE,延长BA交CD于点F,则DF的长为_13函数的自变量的取值范围是14在中,如图,点从

3、的顶点出发,沿的路线以每秒1个单位长度的速度匀速运动到点,在运动过程中,线段的长度随时间变化的关系图象如图所示,则的长为_ 15一枚质地均匀的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率是_16如图,将一张矩形纸片ABCD沿对角线BD折叠,点C的对应点为,再将所折得的图形沿EF折叠,使得点D和点A重合若,则折痕EF的长为_17如图,点D在的边上,已知点E、点F分别为和的重心,如果,那么两个三角形重心之间的距离的长等于_18如图,AB是O的直径,AC是O的切线,OC交O于点D,若C=40,OA=9,则的长为 (结果保留)三、解答题(共66分)19(1

4、0分)计算:20(6分)如图,D、E分别是半径OA和OB的中点,求证:CDCE21(6分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大并求出最大利润22(8分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0)AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF(1)求该抛物线的

5、解析式;(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由23(8分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价(元/件)30405060每天销售量(件)500400300200(1)研究发现,每天销售量与单价满足一次函数关系,求出与的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?24(8分)某超市欲购进一种今年新上市的

6、产品,购进价为20元件,为了调查这种新产品的销路,该超市进行了试销售,得知该产品每天的销售量件与每件的销售价元件之间有如下关系:请写出该超市销售这种产品每天的销售利润元与x之间的函数关系式,并求出超市能获取的最大利润是多少元若超市想获取1500元的利润求每件的销售价若超市想获取的利润不低于1500元,请求出每件的销售价X的范围?25(10分)如图,在ABC中,D为AC上一点,E为CB延长线上一点,且,DGAB,求证:DFBG26(10分)如图,四边形中,平分,点是延长线上一点,且. (1)证明:;(2)若与相交于点,求的长.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据轴对称图形

7、与中心对称图形的概念求解【详解】解:从左数第一、四个是轴对称图形,也是中心对称图形第二是轴对称图形,不是中心对称图形,第三个图形是中心对称图形不是轴对称图形故选B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合2、C【分析】根据切线长定理得到PB=PA、CA=CE,DE=DB,根据三角形的周长公式计算即可【详解】解:PA、PB分别切O于点A、B,PB=PA=4,CD切O于点E且分别交PA、PB于点C,D,CA=CE,DE=DB,PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA

8、+PB=8,故选:C【点睛】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角3、C【解析】设PN=a,PM=b,则ab=6,P点在第二象限,P(-a,b),代入y=中,得k=-ab=-6,故选C4、B【分析】由二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,可知=0,继而求得答案【详解】解:二次函数y=x2-(m-1)x+4的图象与x轴有且只有一个交点,=b2-4ac=-(m-1)2-414=0,(m-1)2=16,解得:m-1=4,m1=5,m2=-1m的值为5或-1故选:B【点睛】此题考查了抛物线与

9、x轴的交点问题,注意掌握二次函数y=ax2+bx+c(a,b,c是常数,a0)的交点与一元二次方程ax2+bx+c=0根之间的关系=b2-4ac决定抛物线与x轴的交点个数0时,抛物线与x轴有2个交点;=0时,抛物线与x轴有1个交点;0时,抛物线与x轴没有交点5、D【分析】根据左视图是从左面看到的图形,即可【详解】从左面看从左往右的正方形个数分别为1,2,故选D【点睛】本题主要考查几何体的三视图,理解左视图是从左面看到的图形,是解题的关键6、D【分析】作所对的圆周角ADB,如图,利用圆内接四边形的性质得ADB70,然后根据圆周角定理求解【详解】解:作所对的圆周角ADB,如图,ACB+ADB180

10、,ADB18011070,AOB2ADB140故选D【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半7、B【解析】试题分析:若此函数与x轴有交点,则,0,即4-4(k-3)0,解得:k4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x轴交点的特点.8、D【分析】可先由一次函数y=ax+c图象得到字母系数的正负,再与二次函数y=ax2+bx+c的图象相比较看是否一致【详解】A一次函数y=ax+c与y轴交点应为(0,c),二次函数y=ax2+bx+c与y轴交点也应为(0,c),图象不符合,故本选项错误;B由抛物

11、线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;C由抛物线可知,a0,由直线可知,a0,a的取值矛盾,故本选项错误;D由抛物线可知,a0,由直线可知,a0,且抛物线与直线与y轴的交点相同,故本选项正确故选:D【点睛】本题考查了抛物线和直线的性质,用假设法来解答这种数形结合题是一种很好的方法9、B【分析】首先连接OB,由ODBC,根据垂径定理,可得BOC=2DOC,又由OD=1,O的半径为2,易求得DOC的度数,然后由勾股定理求得BAC的度数【详解】连接OB,ODBC,ODC=90,OC=2,OD=1,cosCOD=,COD=60,OB=OC,ODBC,BOC=2DOC=120,BA

12、C=BOC=60.故选B.【点睛】此题考查圆周角定理、垂径定理,解题关键在于利用圆周角定理得出两角之间的关系.10、C【分析】根据轴对称图形和中心对称图形的定义逐项识别即可,在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.【详解】A. 既是中心对称图形,也是轴对称图形,故不符合题意;B. 既是中心对称图形,也是轴对称图形,故不符合题意;C.是中心对称图形,但不是轴对称图形,故符合题意;D.不是中心对称图形,是轴对称图形,故不符合题意;故选C.【点睛】本题考查了轴对称图

13、形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.二、填空题(每小题3分,共24分)11、=【分析】连接OP、OQ,根据反比例函数的几何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【详解】解:如图,连接OP、OQ,则点P、点Q在反比例函数的图像上,四边形OMPA、ONQB是矩形,OM=AP,OB=NQ,;故答案为:=.【点睛】本题考查了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.12、【分析】根据点E是AD的中点以及翻折的性质可以求出AEDEEA,然后利用“HL”证明EDF和EAF全等,根据全等三角形对应边相等可证得DFA

14、F;设FDx,表示出FC、BF,然后在RtBCF中,利用勾股定理列方程即可得解【详解】E是AD的中点,AEDE,ABE沿BE折叠后得到ABE,AEEA,ABBA,EDEA,在矩形ABCD中,AD90,EAF90,在RtEDF和RtEAF中,RtEDFRtEAF(HL),DFFA,设DFx,则BF4+x,CF4x,在RtBCF中,62+(4x)2(4+x)2,解得:x故答案为:【点睛】本题主要考查折叠的性质与勾股定理,利用勾股定理列出方程,是解题的关键13、x1【解析】该题考查分式方程的有关概念根据分式的分母不为0可得X10,即x1那么函数y=的自变量的取值范围是x114、【分析】由图象,推得A

15、D=7,DC+BC=6,经过解直角三角形求得BC、DC及BD再由勾股定理求AB【详解】过点B作BDAC于点D由图象可知,BM最小时,点M到达D点则AD=7点M从点D到B路程为13-7=6在DBC中,C=60CD=2,BC=4则BD=2AB=故答案为:【点睛】本题是动点问题的函数图象探究题,考查了解直角三角形的相关知识,数形结合时解题关键15、【解析】试题分析:骰子共有六个面,每个面朝上的机会是相等的,而奇数有1,3,5;根据概率公式即可计算试题解析:骰子六个面中奇数为1,3,5,P(向上一面为奇数)=.考点:概率公式16、【分析】首先由折叠的性质与矩形的性质,证得是等腰三角形,则在中,利用勾股

16、定理,借助于方程即可求得AN的长,又由,易得:,由三角函数的性质即可求得MF的长,又由中位线的性质求得EM的长,则问题得解【详解】如图,设与AD交于N,EF与AD交于M,根据折叠的性质可得:,四边形ABCD是矩形,设,则,在中,即,由折叠的性质可得:,故答案为【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用17、4【分析】连接并延长交于G,连接并延长交于H,根据三角形的重心的概念可得,即可求出GH的长,根据对应边成比例,夹角相等可得,根据相似三角形的性质即可得答案【详解】如图,连接并延长交

17、于G,连接并延长交于H,点E、F分别是和的重心,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍18、,【解析】试题解析:AC是O的切线,OAC=90,C=40,AOD=50,的长为,的长为9-=,考点:1.切线的性质;2.弧长的计算三、解答题(共66分)19、-1【分析】将, 代入计算即可得到答案.【详解】=-4+1+,=-3+2,=-1.【点睛】此题考查实数的混合计算,熟记特殊角度的三角函数值,掌握正确的计算顺序是解题的关键.20、证明见解析【分析】连接OC,证明三角形COD和C

18、OE全等;然后利用全等三角形的对应边相等得到CD=CE【详解】解:连接OC在O中,AOC=BOC,OA=OB,DE分别是半径OA和OB的中点,OD=OE,OC=OC(公共边),CODCOE(SAS),CD=CE(全等三角形的对应边相等)【点睛】本题考查圆心角、弧、弦的关系;全等三角形的判定与性质21、他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元【分析】日利润=销售量每件利润每件利润为(x-8)元,销售量为100-10(x-10),据此得关系式【详解】解:由题意得,y=(x-8)100-10(x-10)=-10(x-14)2+360(10a20),a=-100

19、当x=14时,y有最大值360答:他将售出价(x)定为14元时,才能使每天所赚的利润(y)最大,最大利润是360元【点睛】本题考查二次函数的应用22、(1)yx2x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析【分析】(1)根据题意可以得到C的坐标,然后根据抛物线过点A、C、D可以求得该抛物线的解析式;(2)根据对称轴和图形可以画出相应的图形,然后找到使得四边形EAMN的周长的取得最小值时的点M和点N即可,然后求出直线MN的解析式,然后直线MN与x轴的交点即可解答本题;(3)根据题意作出合适的图形,然后根据平行四边形的性质可知EHFP,而通过计算看EH和FP是否相等

20、,即可解答本题【详解】解:(1)AEx轴,OE平分AOB,AEOEOBAOE,AOAE,A(0,2),E(2,2),点C(4,2),设二次函数解析式为yax2+bx+2,C(4,2)和D(3,0)在该函数图象上,得,该抛物线的解析式为yx2x+2;(2)作点A关于x轴的对称点A1,作点E关于直线BC的对称点E1,连接A1E1,交x轴于点M,交线段BC于点N根据对称与最短路径原理,此时,四边形AMNE周长最小易知A1(0,2),E1(6,2)设直线A1E1的解析式为ykx+b,得,直线A1E1的解析式为当y0时,x3,点M的坐标为(3,0)由勾股定理得AM,ME1,四边形EAMN周长的最小值为A

21、M+MN+NE+AEAM+ME1+AE;(3)不存在理由:过点F作EH的平行线,交抛物线于点P易得直线OE的解析式为yx,抛物线的解析式为yx2x+2,抛物线的顶点F的坐标为(2,),设直线FP的解析式为yx+b,将点F代入,得,直线FP的解析式为,解得或,点P的坐标为(,),FP(2),解得,或,点H是直线yx与抛物线左侧的交点,点H的坐标为(,),OH,易得,OE2,EHOEOH2 ,EHFP,点P不符合要求,不存在点P,使得四边形EHFP为平行四边形 【点睛】本题主要考察二次函数综合题,解题关键是得到C的坐标,然后根据抛物线过点A、C、D求得抛物线的解析式.23、(1)y10x+800;

22、(2)单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元【分析】(1)直接利用待定系数法求解可得;(2)根据“总利润单件利润销售量”可得关于的一元二次方程,解之即可得【详解】解:(1)设ykx+b,根据题意可得 ,解得:,每天销售量与单价的函数关系为:y10x+800, (2)根据题意,得:(x20)(10x+800)8000, 整理,得:x2100x+24000,解得:x140,x260,销售单价最高不能超过45元/件,x40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元.【点睛】本题主要考查了一次函数及一元二次方程的应用,解题的关键是熟练掌握待定系

23、数法求函数解析式及找到题目蕴含的相等关系24、 (1),2000; (2) 每件的销售价为35元和25元;(3).【分析】(1)根据利润=单件利润销售量列出y与x的函数关系式,利用对称轴求函数最大值;(2)令y=1500构造一元二次方程;(3)由(2)结合二次函数图象观察图象可解.【详解】(1)由已知当时,当解得,所以每件的销售价为35元和25元由结合函数图象可知超市想获取的利润不低于1500元,x的取值范围为: 25x35.【点睛】本题考查了二次函数实际应用问题,解题的关键是熟练掌握二次函数的性质和一元二次方程,解答时注意结合函数图象解决问题25、详见解析【分析】证明DFHEBH,证出DFB

24、C,可证出四边形BGDF平行四边形,则DF=BG【详解】证明:DGAB, ,EHBDHF,DFHEBH,EFDH,DF/BC,四边形BGDF平行四边形,DFBG【点睛】本题考查了相似三角形的判定与性质,平行线分线段成比例定理,平行四边形的判定与性质等知识,解题的关键是熟练掌握相似三角形的判定与性质26、(1)详见解析;(2)【分析】(1)直接利用等腰三角形的性质结合互余的定义得出BDC=PDC;(2)首先过点C作CMPD于点M,进而得出CPMAPD,求出EC的长即可得出答案【详解】解:(1):,平分,; (2) 过点作于点, 设,解得:,.【点睛】此题主要考查了相似三角形的判定与性质以及等腰三角形的性质等知识,正确得出CPMAPD是解题关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服