资源描述
2022年人教版中学七7年级下册数学期末测试(及答案)(1)
一、选择题
1.9的算术平方根是()
A. B. C.3 D.-3
2.下列车标图案,可以看成由图形的平移得到的是( )
A. B. C. D.
3.下列各点中,在第四象限的是( )
A. B. C. D.
4.下列命题中假命题有( )
①两条直线被第三条直线所截,同位角相等
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行
③点到直线的垂线段叫做点到直线的距离
④过一点有且只有一条直线与已知直线平行
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.
A.5个 B.4个 C.3个 D.2个
5.如图,点在延长线上,、交于,且,,比的余角小,为线段上一动点,为上一点,且满足,为的平分线.则下列结论:①;②平分;③;④的角度为定值.其中正确结论的个数有( )
A.1个 B.2个 C.3个 D.4个
6.下列计算正确的是( )
A. B. C. D.
7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( )
A.45° B.40° C.55° D.35°
8.如图,过点作直线:的垂线,垂足为点,过点作轴,垂足为点,过点作,垂足为点,…,这样依次作下去,得到一组线段:,,,…,则线段的长为( )
A. B. C. D.
九、填空题
9.的平方根是_________
十、填空题
10.平面直角坐标系中,点关于轴的对称点是__________.
十一、填空题
11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____.
十二、填空题
12.如图,,点在上,点在上,则的度数等于______.
十三、填空题
13.如图,将一张长方形纸片沿EF折叠后,点A,B分别落在A′,B′的位置.如果∠1=59°,那么∠2的度数是_____.
十四、填空题
14.规定,,例如:,,通过观察,那么______.
十五、填空题
15.点到两坐标轴的距离相等,则________.
十六、填空题
16.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为____
十七、解答题
17.计算(1)
(2)
十八、解答题
18.求下列各式中x的值
(1)81x2 =16
(2)
十九、解答题
19.补全下面的证明过程和理由:
如图,AB和CD相交于点O,EF∥AB,∠C=∠COA,∠D=∠BOD.
求证:∠A=∠F.
证明:∵∠C=∠COA,∠D=∠BOD,( )
又∵∠COA=∠BOD,( )
∴∠C= .( )
∴AC∥DF( ).
∴∠A= ( ).
∵EF∥AB,
∴∠F= ( ).
∴∠A=∠F( ).
二十、解答题
20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):
(I)在方格纸内将三角形经过一次平移后得到三角形,图中标出了点的对应点,画出三角形;
(2)过点画线段使且;
(3)图中与的关系是______;
(4)点在线段上,,点是直线上一动点线段的最小值为______.
二十一、解答题
21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,,于是可用来表示的小数部分.请解答下列问题:
(1)的整数部分是________,小数部分是________.
(2)如果的小数部分为,的整数部分为,求的值.
(3)已知:,其中是整数,且,求的相反数.
二十二、解答题
22.小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍.她不知能否裁得出来,正在发愁.小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?
二十三、解答题
23.如图1,已AB∥CD,∠C=∠A.
(1)求证:AD∥BC;
(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.
(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,
①直接写出∠AED与∠FDC的数量关系: .
②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=∠DEB,补全图形后,求∠EPD的度数
二十四、解答题
24.(1)学习了平行线以后,香橙同学想出了过一点画一条直线的平行线的新方法,她是通过折纸做的,过程如(图1).
①请你仿照以上过程,在图2中画出一条直线b,使直线b经过点P,且,要求保留折纸痕迹,画出所用到的直线,指明结果.无需写画法:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点P的直线a的 线.
(2)已知,如图3,,BE平分,CF平分.求证:(写出每步的依据).
二十五、解答题
25.如图①所示,在三角形纸片中,,,将纸片的一角折叠,使点落在内的点处.
(1)若,________.
(2)如图①,若各个角度不确定,试猜想,,之间的数量关系,直接写出结论.
②当点落在四边形外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,,,之间又存在什么关系?请说明.
(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是________.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据一个非负数的正的平方根,即为这个数的算术平方根解答即可.
【详解】
解:9的算术平方根是3,
故选C.
【点睛】
本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.
2.A
【分析】
根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.
【详解】
解:A、可以由一个“基本图案”平移得到,故本选项符合题意;
B、不是由一个“基本图案”平移得到,故本选项
解析:A
【分析】
根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.
【详解】
解:A、可以由一个“基本图案”平移得到,故本选项符合题意;
B、不是由一个“基本图案”平移得到,故本选项不符合题意;
C、可以由一个“基本图案”旋转得到,故本选项不符合题意;
D、可以由一个“基本图案”旋转得到,故本选项不符合题意.
故选:A.
【点睛】
本题主要考查了图形的平移和旋转,准确分析判断是解题的关键.
3.B
【分析】
根据第四象限的点的横坐标是正数,纵坐标是负数解答.
【详解】
解:A、(3,0)在x轴上,不合题意;
B、(2,-5)在第四象限,符合题意;
C、(-5,-2)在第三象限,不合题意;
D、(-2,3),在第二象限,不合题意.
故选:B.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据平行线的性质和判定,点到直线距离定义一一判断即可.
【详解】
解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;
②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;
③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;
④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;
⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内.
故选B.
【点睛】
本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.
5.D
【分析】
①由可得AE∥BD,进而得到,结合即可得到结论;②由得出,结合即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;
【详解】
∵,
∴AE∥BD,
∴,
∵,
∴,
∴,结论①正确;
∵,
∴,
∵,
∴,
∴平分,结论②正确;
∵,
∴,
∵比的余角小,
∴,
∵,,
∴,结论③正确;
∵为的平分线,
∴,
∵,
∴,
∴,结论④正确;
故正确的结论是①②③④;
故答案选D.
【点睛】
本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键.
6.D
【分析】
分别根据算术平方根的定义以及立方根的定义逐一判断即可.
【详解】
解:A、,故本选项不合题意;
B、,故本选项不合题意;
C、,故本选项不合题意;
D、,故本选项符合题意;
故选:D.
【点睛】
本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.
7.D
【分析】
根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.
【详解】
解:∵∠1=110°,
∴∠3=∠1=110°,
∵AB∥CD,
∴∠DFE=180°-∠3=180°-110°=70°,
∵HF平分∠EFD,
∴∠DFH=∠DFE=×70°=35°,
∵AB∥CD,
∴∠2=∠DFH=35°.
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.
8.B
【分析】
由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.
【详解】
解:由,可得
∵点A0坐标为(2,0)
∴OA0=2,
∴
∴
∴
∴A2020A2021=
故答案为:
解析:B
【分析】
由,可得,然后根据形的性质結合图形即可得到规律,然后按规律解答即可.
【详解】
解:由,可得
∵点A0坐标为(2,0)
∴OA0=2,
∴
∴
∴
∴A2020A2021=
故答案为:B
【点睛】
本题考查了规律型中点的坐标以及含30°角的直角三角形,利用“在直角三角形中,30°角所对的直角边等于斜边的一半”,结合图形找出变化规律是解题的关键.
九、填空题
9..
【详解】
【分析】先确定,再根据平方根定义可得的平方根是±.
【详解】因为,6的平方根是±,所以的平方根是±.
故正确答案为±.
【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示
解析:.
【详解】
【分析】先确定,再根据平方根定义可得的平方根是±.
【详解】因为,6的平方根是±,所以的平方根是±.
故正确答案为±.
【点睛】此题考核算术平方根和平方根定义.此题关键要看清符号所表示的意义.
十、填空题
10.【分析】
根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.
【详解】
解:点关于轴的对称点的坐标是(3,2).
【点睛】
本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特
解析:
【分析】
根据平面直角坐标系中,关于坐标轴对称的点的坐标特征,即可完成解答.
【详解】
解:点关于轴的对称点的坐标是(3,2).
【点睛】
本题考查了根据平面直角坐标系中关于坐标轴对称的点的坐标特征,即关于x轴对称的点的坐标横坐标不变,纵坐标变为相反数;关于y轴对称的点的坐标纵坐标不变,横 坐标变为相反数;
十一、填空题
11.6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌
解析:6
【详解】
如图,过点D作DH⊥AC于点H,
又∵AD是△ABC的角平分线,DF⊥AB,垂足为F,
∴DF=DH,∠AFD=∠ADH=∠DHG=90°,
又∵AD=AD,DE=DG,
∴△ADF≌△ADH,△DEF≌△DGH,
设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6.
∴△EDF的面积为6.
十二、填空题
12.180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥
解析:180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥CD,
∴∠1=∠AFD,
∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,
∴∠2+360°-∠1-∠3=180°,
∴∠1+∠3-∠2=180°,
故答案为:180°
【点睛】
本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解
十三、填空题
13.62°
【分析】
根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁
解析:62°
【分析】
根据折叠的性质求出∠EFB′=∠1=59°,∠B′FC=180°−∠1−∠EFB′=62°,根据平行线的性质:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.:求出即可.
【详解】
解:∵将一张长方形纸片沿EF折叠后,
点A、B分别落在A′、B′的位置,∠1=59°,
∴∠EFB′=∠1=59°,
∴∠B′FC=180°−∠1−∠EFB′=62°,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠2=∠B′FC=62°,
故答案为:62°.
【点睛】
本题考查了对平行线的性质和折叠的性质的应用,解此题的关键是求出∠B′FC的度数,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
十四、填空题
14.【分析】
由题干得到,将原式进行整理化简即可求解.
【详解】
∵,
∴,
∴
.
【点睛】
本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.
解析:
【分析】
由题干得到,将原式进行整理化简即可求解.
【详解】
∵,
∴,
∴
.
【点睛】
本题考查了归纳概括,找到互为倒数的两个数之和为1是解题关键.
十五、填空题
15.或.
【分析】
根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.
【详解】
解:∵点到两坐标轴的距离相等,
∴,
或,
解得,或,
故答案为:或.
【点睛】
本题考查了点到坐标轴的距
解析:或.
【分析】
根据到两坐标轴的距离相等,可知横纵坐标的绝对值相等,列方程即可.
【详解】
解:∵点到两坐标轴的距离相等,
∴,
或,
解得,或,
故答案为:或.
【点睛】
本题考查了点到坐标轴的距离,解题关键是明确到坐标轴的距离是坐标的绝对值.
十六、填空题
16.【分析】
利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后
解析:
【分析】
利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P2021的坐标与点P1的坐标相同.
【详解】
解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,-1),点P5的坐标为(2,0),…,
而2021=4×505+1,
所以点P2021的坐标与点P1的坐标相同,为(2,0),
故答案为:.
【点睛】
本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键.
十七、解答题
17.(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(
解析:(1);(2)
【分析】
(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.
(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.
【详解】
(1),
,
.
(2),
,
.
【点睛】
本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.
十八、解答题
18.(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
解析:(1);(2)
【分析】
(1)方程变形后,利用平方根定义开方即可求出解;
(2)方程利用立方根的定义开立方即可求出解.
【详解】
解:(1)方程变形得:,
解得:;
(2)开立方得:,
解得:.
【点睛】
本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法.
十九、解答题
19.见解析
【分析】
根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.
【详解】
解:∵∠C=∠COA,∠D=∠BOD(已知),
解析:见解析
【分析】
根据对顶角相等结合已知得出∠C=∠D,从而得出AC∥DF,由平行线的性质得出∠A=∠ABD,∠F=∠ABD,即可得出结论.
【详解】
解:∵∠C=∠COA,∠D=∠BOD(已知),
又∵∠COA=∠BOD(对顶角相等),
∴∠C=∠D(等量代换).
∴AC∥DF(内错角相等,两直线平行).
∴∠A=∠ABD(两直线平行,内错角相等).
∵EF∥AB,
∴∠F=∠ABD(两直线平行,内错角相等).
∴∠A=∠F(等量代换).
故答案为:已知,对顶角相等;∠D,等量代换;内错角相等,两直线平行;∠ABD,两直线平行,内错角相等;∠ABD,两直线平行,同位角相等,等量代换.
【点睛】
本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解题的关键.
二十、解答题
20.(1)见解析;(2)见解析;(3),AD∥;(4)
【分析】
(1)根据平移的性质,按要求作图即可;
(2)根据过点A画线段AD∥BC,AD=BC,即可;
(3)由平移的性质可得,∥BC,,从而可以
解析:(1)见解析;(2)见解析;(3),AD∥;(4)
【分析】
(1)根据平移的性质,按要求作图即可;
(2)根据过点A画线段AD∥BC,AD=BC,即可;
(3)由平移的性质可得,∥BC,,从而可以得到,AD∥;
(4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短,由此利用三角形面积公式求解即可.
【详解】
解:(1)如图所示,即为所求:
(2)如图所示,即为所求:
(3)平移的性质可得 ,∥BC,由AD=BC,AD∥BC,从而可以得到,AD∥;
故答案为:,AD∥;
(4)根据点到直线的距离垂线段最短,可知当BH⊥CE时BH最短,
如图所示:∵AD∥BC,
∴ ,
∴,
∴,
∴点H是直线CE上一动点线段BH的最小值为.
故答案为:.
【点睛】
本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.
二十一、解答题
21.(1)4, −4;(2)1;(3)−12+;
【解析】
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、 的范围,求出a、b的值,再代入求解即可;
(3)先估算出的范围,求出x、y的
解析:(1)4, −4;(2)1;(3)−12+;
【解析】
【分析】
(1)先估算出的范围,即可得出答案;
(2)先估算出、 的范围,求出a、b的值,再代入求解即可;
(3)先估算出的范围,求出x、y的值,再代入求解即可.
【详解】
(1)∵4<<5,
∴的整数部分是4,小数部分是 −4,
故答案为:4, −4;
(2)∵2<<3,
∴a=−2,
∵3<<4,
∴b=3,
∴a+b−=−2+3−=1;
(3)∵1<3<4,
∴1<<2,
∴11<10+<12,
∵10+=x+y,其中x是整数,且0<y<1,
∴x=11,y=10+−11=−1,
∴x−y=11−(−1)=12−,
∴x−y的相反数是−12+;
【点睛】
此题考查估算无理数的大小,解题关键在于掌握估算方法.
二十二、解答题
22.不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,
解析:不同意,理由见解析
【分析】
先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断.
【详解】
解:不同意,
因为正方形的面积为,故边长为
设长方形宽为,则长为
长方形面积
∴,
解得(负值舍去)
长为
即长方形的长大于正方形的边长,
所以不能裁出符合要求的长方形纸片
【点睛】
本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.
二十三、解答题
23.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根
解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°
【分析】
(1)根据平行线的性质及判定可得结论;
(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;
(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;
②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠PEA=∠DEB,求出∠AED=50°,即可得出∠EPD的度数.
【详解】
解:(1)证明:AB∥CD,
∴∠A+∠D=180°,
∵∠C=∠A,
∴∠C+∠D=180°,
∴AD∥BC;
(2)∠BAE+∠CDE=∠AED,理由如下:
如图2,过点E作EF∥AB,
∵AB∥CD
∴AB∥CD∥EF
∴∠BAE=∠AEF,∠CDE=∠DEF
即∠FEA+∠FED=∠CDE+∠BAE
∴∠BAE+∠CDE=∠AED;
(3)①∠AED-∠FDC=45°;
∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,
∴∠AEC=∠DEC+∠AEB,
∴∠AED=∠AEB,
∵DF平分∠EDC
∠DEC=2∠FDC
∴∠DEC=90°-2∠FDC,
∴2∠AED+(90°-2∠FDC)=180°,
∴∠AED-∠FDC=45°,
故答案为:∠AED-∠FDC=45°;
②如图3,
∵∠AED=∠F+∠FDE,∠AED-∠FDC=45°,
∴∠F=45°,
∴∠DEP=2∠F=90°,
∵∠DEA-∠PEA=∠DEB=∠DEA,
∴∠PEA=∠AED,
∴∠DEP=∠PEA+∠AED=∠AED=90°,
∴∠AED=70°,
∵∠AED+∠AEC=180°,
∴∠DEC+2∠AED=180°,
∴∠DEC=40°,
∵AD∥BC,
∴∠ADE=∠DEC=40°,
在△PDE中,∠EPD=180°-∠DEP-∠AED=50°,
即∠EPD=50°.
【点睛】
本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.
二十四、解答题
24.(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据
解析:(1)①见解析;②垂;(2)见解析
【分析】
(1)①过点折纸,使痕迹垂直直线,然后过点折纸使痕迹与前面的痕迹垂直,从而得到直线;
②步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
(2)先根据平行线的性质得到,再利用角平分线的定义得到,然后根据平行线的判定得到结论.
【详解】
(1)解:①如图2所示:
②在(1)中的步骤(b)中,折纸实际上是在寻找过点的直线的垂线.
故答案为垂;
(2)证明:平分,平分(已知),
,(角平分线的定义),
(已知),
(两直线平行,内错角相等),
(等量代换),
(等式性质),
(内错角相等,两直线平行).
【点睛】
本题考查了作图复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了平行线的性质与判定.
二十五、解答题
25.(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′
解析:(1)50°;(2)①见解析;②见解析;(3)360°.
【分析】
(1)根据题意,已知,,可结合三角形内角和定理和折叠变换的性质求解;
(2)①先根据折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,由两个平角∠AEB和∠ADC得:∠1+∠2等于360°与四个折叠角的差,化简得结果;
②利用两次外角定理得出结论;
(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.
【详解】
解:(1)∵,,
∴∠A′=∠A=180°-(65°+70°)=45°,
∴∠A′ED+∠A′DE =180°-∠A′=135°,
∴∠2=360°-(∠C+∠B+∠1+∠A′ED+∠A′DE)=360°-310°=50°;
(2)①,理由如下
由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,
∵∠AEB+∠ADC=360°,
∴∠1+∠2=360°-∠ADE-∠A′DE-∠AED-∠A′ED=360°-2∠ADE-2∠AED,
∴∠1+∠2=2(180°-∠ADE-∠AED)=2∠A;
②,理由如下:
∵是的一个外角
∴.
∵是的一个外角
∴
又∵
∴
(3)如图
由题意知,
∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')
又∵∠B=∠B',∠C=∠C',∠A=∠A',
∠A+∠B+∠C=180°,
∴∠1+∠2+∠3+∠4+∠5+∠6=360°.
【点睛】
题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.
展开阅读全文