资源描述
2022年人教版四4年级下册数学期末解答质量检测卷及答案大全
1.淘气和笑笑比赛折幸运星。淘气6分钟折了5个幸运星,笑笑9分钟折了7个幸运星,谁折得更快?
2.观察下图巧克力糖果盒,每块巧克力是这盒巧克力的几分之几?把这盒巧克力,平均分给5位同学,每人分得几块?每人分到的是这盒巧克力的几分之几?
3.一本书有80页,小芳已经看了24页,剩下的页数占总页数的几分之几?
4.凤凰小学五年级有学生320人,其中男生180人,男生人数是女生人数的几分之几?(结果约成最简分数)
5.五年级某班在植树活动中,无论分3人一组、4人一组还是5人一组,都剩余2个同学,这个班共有多少人?
6.妈妈买来一些糖果放在果盘里,妙想3个3个地拿,最后剩下1个;如果她5个5个地拿,最后也剩下1个。这些糖果至少有多少个?
7.五年级(2)班同学站队,4人一排,5人一排,6人一排都没有剩余。五年级(2)班至少有学生多少人?
8.水果店有一些苹果,如果每6千克装一袋,多4千克:如果每10千克装一袋,也多4千克,这些苹果最少有多少千克?
9.一瓶果汁2千克,第一次喝了它的,第二次喝了它的,还剩这瓶果汁的几分之几?
10.工程队铺一条千米长的公路,第一天修了千米,第二天比第一天多修了千米。两天一共修了多少千米?
11.赵琳家六月用了吨的水,七月比六月节约了吨,七月用水多少吨?
12.一根绳子截去米,比剩下的少米。这根绳子原来长多少米?
13.一个无盖长方体的铁皮水槽,长10分米,宽8分米,高6分米。(铁皮厚度忽略不计)
(1)做这个水槽至少需要铁皮多少平方分米?
(2)这个水槽最多可以盛水多少升?
14.用铁丝做一个长、宽、高分别是2分米、2分米、4分米的长方体框架,再把它的五个面糊上纸,(如图,下面不糊),做成一个长方体形孔明灯。
(1)至少需要多少平方分米的纸?
(2)这个孔明灯的容积是多少立方分米?
15.化工厂要挖一个蓄水池,蓄水池的长是20米,宽是16米,深是2.5米。
(1)这个蓄水池可以存水多少立方米?
(2)要在它的四壁和底面铺上瓷砖,铺瓷砖部分的面积是多少平方米?
16.在一个长,宽,深的长方体鱼池内壁和底面贴上瓷砖。每块瓷砖可以贴,一共需要多少块?
17.把一个底面积是64m2,高是5m的长方体铁块,熔铸成横截面是正方形的长方体,横截面的边长是4m,铸成的长方体的高是多少厘米?(损耗忽略不计)
18.有甲、乙两个无盖的长方体容器,甲容器中有水乙容器空着。从里面量甲容器长30厘米,宽25厘米,高24厘米,容器中水面高10厘米;乙容器长25厘米,宽20厘米,高20厘米。将甲容器中的水全部倒入乙容器中,乙容器的水距容器口有多少厘米?
19.把一个棱长6dm的正方体钢块,锻造成横截面积为8dm2的长方体钢锭。这根钢锭长多少米?
20.一个正方体玻璃容器的棱长是2分米,向容器中倒入5升水,再把一块石头完全浸没在水中,这时量得容器内水深15厘米。石头的体积是多少立方分米?
21.画一画。
(1)以直线MN为对称轴作图形A的轴对称图形,得到图形B。
(2)将图形B绕点O逆时针旋转90°,得到图形C。
(3)将图形A向右平移8格,再向上平移5格,得到图形D。
22.请按要求画图形。
(1)请画出下面图形A的对称轴。
(2)请画出图形A先向右平移6格,再向下平移2格后的图形。
(3)画一个与图形A面积相等的平行四边形。
23.(1)画出将小鱼向上平移4格的图形。
(2)再画出把平移后的小鱼向左平移5格后的图形。
(3)观察对称轴的位置,画出小船的轴对称图形。
24.(1)画出图①的另一半,使它成为一个轴对称图形。
(2)将图②绕C点逆时针旋转90°,画出旋转后的图形。
(3)将旋转后的三角形向石平移5格,画出平移后的图形。
25.如图所示,一个透明的密封长方体容器,从里面量,长12cm,宽10cm,高15cm,容器中水深6cm。如果长方体容器向右侧倒(右侧面为底面)置桌子平面上,水的高度会是多少厘米?
26.在一个长,宽,高的长方体彩泥块中(如下图),切出一个最大的正方体,再在剩下的彩泥块中切出一个最大的正方体。
(1)第一次得到的正方体棱长是( )厘米。
(2)第二次得到的正方体棱长是( )厘米。
(3)当切掉这两个正方体后,剩下彩泥的体积一共是多少立方厘米?
27.下面是西关家电城去年6~10月空调和冰箱的销售情况统计图。
(1)西关家电城( )月的空调销售量最多,( )月的冰箱销售量最少。
(2)西关家电城空调和冰箱的销售量( )月相差最多。
(3)7月后空调的销售量呈现( )趋势。
(4)西关家电城9月冰箱的销售量是空调的几分之几?
28.下表是某公司2020年1—12月的收入、支出统计表。
月份
1
2
3
4
5
6
7
8
9
10
11
12
收入/万元
40
60
30
30
50
60
80
70
70
80
90
80
支出/万元
20
30
10
20
20
30
20
30
40
50
40
50
(1)请根据上表绘制一幅复式折线统计图。
(2)请根据统计图回答下列问题。
①( )月份收入和支出相差最大。
②6月份收入和支出相差( )万元。
③第四季度实际收入( )万元。
④平均每月支出( )万元。
1.淘气
【分析】
每分钟折的个数=折的总个数÷分数数,据此分别求出淘气和笑笑每分钟折的个数,比较即可。
【详解】
淘气:(个),
笑笑:(个),
因为,所以淘气折得更快。
答:淘气折得更快。
【点睛】
解析:淘气
【分析】
每分钟折的个数=折的总个数÷分数数,据此分别求出淘气和笑笑每分钟折的个数,比较即可。
【详解】
淘气:(个),
笑笑:(个),
因为,所以淘气折得更快。
答:淘气折得更快。
【点睛】
此题考查了分数与除法的关系以及异分母分数的大小比较,被除数相当于分子,除数相当于分母,认真解答即可。
2.;5块;
【分析】
用1÷巧克力块数=每块巧克力是这盒巧克力的几分之几;总块数÷人数=平均每人分得块数;将巧克力块数看作单位“1”,1÷人数=每人分到的是这盒巧克力的几分之几。
【详解】
1÷25=
解析:;5块;
【分析】
用1÷巧克力块数=每块巧克力是这盒巧克力的几分之几;总块数÷人数=平均每人分得块数;将巧克力块数看作单位“1”,1÷人数=每人分到的是这盒巧克力的几分之几。
【详解】
1÷25=
25÷5=5(块)
1÷5=
答:每块巧克力是这盒巧克力的,每人分得5块,每人分到的是这盒巧克力的。
【点睛】
分数的分子相当于被除数,分母相当于除数。
3.【分析】
求出剩下的页数,再用剩下的页数除以总页数,即可解答。
【详解】
(80-24)÷80
=56÷80
=
答:剩下的页数占总页数的。
【点睛】
本题考查求一个数是另一个数的几分之几。
解析:
【分析】
求出剩下的页数,再用剩下的页数除以总页数,即可解答。
【详解】
(80-24)÷80
=56÷80
=
答:剩下的页数占总页数的。
【点睛】
本题考查求一个数是另一个数的几分之几。
4.【分析】
根据题意,求出女生有多少人,用总人数减去男生人数,再用男生人数除以女生人数,化简,即可解答。
【详解】
180÷(320-180)
=180÷140
=
=
答:男生人数占女生人数的。
解析:
【分析】
根据题意,求出女生有多少人,用总人数减去男生人数,再用男生人数除以女生人数,化简,即可解答。
【详解】
180÷(320-180)
=180÷140
=
=
答:男生人数占女生人数的。
【点睛】
本题考查求一个数占另一个数的几分之几。
5.62人
【分析】
根据题意可知,3人一组剩2人,4人一组剩2人,5人一组剩2人,这个数就是3、4、5的最小公倍数加上2,求出3、4、5的最小公倍数,即可解答。
【详解】
3、4、5的最小公倍数是:3
解析:62人
【分析】
根据题意可知,3人一组剩2人,4人一组剩2人,5人一组剩2人,这个数就是3、4、5的最小公倍数加上2,求出3、4、5的最小公倍数,即可解答。
【详解】
3、4、5的最小公倍数是:3×4×5
=12×5
=60
这个班共有:60+2=62(人)
答:这个班共有62人。
【点睛】
本题考查最小公倍数的求法;灵活运用最小公倍数的求解方法来解决实际问题。
6.16个
【分析】
余数相同,只要求出3、5的最小公倍数,然后再加上1,即可得解。
【详解】
3、5是互质数,所以3和5的最小公倍数是3×5=15
15+1=16(个)
答:这些糖果至少有16个。
【
解析:16个
【分析】
余数相同,只要求出3、5的最小公倍数,然后再加上1,即可得解。
【详解】
3、5是互质数,所以3和5的最小公倍数是3×5=15
15+1=16(个)
答:这些糖果至少有16个。
【点睛】
灵活应用同余定理和求几个数的最小公倍数的方法来解决实际问题。
7.60人
【分析】
求出三种站法每排人数的最小公倍数就是最少人数。
【详解】
4=2×2
6=2×3
2×2×3×5=60(人)
答:五年级(2)班至少有学生60人。
【点睛】
全部公有的质因数和各自
解析:60人
【分析】
求出三种站法每排人数的最小公倍数就是最少人数。
【详解】
4=2×2
6=2×3
2×2×3×5=60(人)
答:五年级(2)班至少有学生60人。
【点睛】
全部公有的质因数和各自独立的质因数,它们连乘的积就是这几个数的最小公倍数。
8.34千克
【分析】
苹果每袋装6千克或者10千克,都会多4千克,需要求苹果最少的重量,即求出6和10 的最小公倍数,再加上多出的4千克,即可得出答案。
【详解】
,,则6和10的最小公倍数为; ;
解析:34千克
【分析】
苹果每袋装6千克或者10千克,都会多4千克,需要求苹果最少的重量,即求出6和10 的最小公倍数,再加上多出的4千克,即可得出答案。
【详解】
,,则6和10的最小公倍数为; ;
再加上多出的4千克,即(千克)。
答:这些苹果最少有34千克。
【点睛】
本题主要考查的是最小公倍数的应用,解题的关键是理解求苹果最少即是求两个数的最小公倍数再加上多出来的苹果数。
9.【分析】
把2千克果汁看作单位“1”,减去第一次、第二次喝的分率就是剩下的是这瓶果汁的几分之几。
【详解】
1--
=1-(+)
=1-
=
答:还剩这瓶果汁的。
【点睛】
本题关键是确定单位“1
解析:
【分析】
把2千克果汁看作单位“1”,减去第一次、第二次喝的分率就是剩下的是这瓶果汁的几分之几。
【详解】
1--
=1-(+)
=1-
=
答:还剩这瓶果汁的。
【点睛】
本题关键是确定单位“1”,然后根据分数减法的意义解答。
10.千米
【分析】
第一天修了千米,第二天比第一天多修了千米,则第二天修了(+)米,再把它和第一天修的长度相加即可解答。
【详解】
++
=
=
=(千米)
答:两天一共修了千米。
【点睛】
本题考查分
解析:千米
【分析】
第一天修了千米,第二天比第一天多修了千米,则第二天修了(+)米,再把它和第一天修的长度相加即可解答。
【详解】
++
=
=
=(千米)
答:两天一共修了千米。
【点睛】
本题考查分数连加的应用。根据题目中的数量关系即可解答。
11.吨
【分析】
根据题意可知,七月比六月节约了吨,六月的用水量减去吨就等于七月的用水量。
【详解】
-=(吨)
答:七月用吨。
【点睛】
本题主要考查分数的计算,做题时需认真仔细。
解析:吨
【分析】
根据题意可知,七月比六月节约了吨,六月的用水量减去吨就等于七月的用水量。
【详解】
-=(吨)
答:七月用吨。
【点睛】
本题主要考查分数的计算,做题时需认真仔细。
12.米
【分析】
一根绳子截去米后,比剩下的少米,根据加法的意义,用去的部分米+米=剩下的米数,然后将截去部分加上剩下部分,即得这根绳子原长多少米。
【详解】
+(+)
=+
=(米)
答:这根绳子原来
解析:米
【分析】
一根绳子截去米后,比剩下的少米,根据加法的意义,用去的部分米+米=剩下的米数,然后将截去部分加上剩下部分,即得这根绳子原长多少米。
【详解】
+(+)
=+
=(米)
答:这根绳子原来长米。
【点睛】
完成分数加减法题目时,要注意通分约分。
13.(1)296平方分米
(2)480升
【分析】
(1)做这个水槽需要铁皮,相当于求这个水槽的表面积,根据无盖长方体的表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解。
(2)根据长方
解析:(1)296平方分米
(2)480升
【分析】
(1)做这个水槽需要铁皮,相当于求这个水槽的表面积,根据无盖长方体的表面积公式:长×宽+(长×高+宽×高)×2,把数代入公式即可求解。
(2)根据长方体的体积公式:长×宽×高,把数代入求出水槽的体积,之后再转换单位即可。
【详解】
(1)10×8+(10×6+8×6)×2
=80+(60+48)×2
=80+108×2
=80+216
=296(平方分米)
答:做这个水槽至少需要铁皮296平方分米。
(2)10×8×6
=80×6
=480(立方分米)
480立方分米=480升
答:这个水槽最多可以盛水480升。
【点睛】
本题主要考查长方体的表面积和体积的公式,熟练掌握它们的公式并灵活运用。
14.(1)36平方分米;(2)16立方分米
【分析】
(1)至少需要多少平方分米的纸,实质就是求露在外面五个面的面积和,利用长方体表面积公式计算即可;
(2)利用长方体的容积公式V=abc,代入数据计算
解析:(1)36平方分米;(2)16立方分米
【分析】
(1)至少需要多少平方分米的纸,实质就是求露在外面五个面的面积和,利用长方体表面积公式计算即可;
(2)利用长方体的容积公式V=abc,代入数据计算即可。
【详解】
(1)2×4×4+2×2
=32+4
=36(平方分米)
(2)2×2×4
=4×4
=16(立方分米)
答:至少需要36平方分米的纸;这个孔明灯的容积是16立方分米。
【点睛】
长方体的表面积和体积计算为本题考查重点。
15.(1)800立方米
(2)500平方米
【分析】
(1)要求蓄水池可以存水多少立方米,就是求这个长方体的体积,根据体积公式:V=abh,代入数据即可求解;
(2)求的是长方体的表面积,这个长方体的表
解析:(1)800立方米
(2)500平方米
【分析】
(1)要求蓄水池可以存水多少立方米,就是求这个长方体的体积,根据体积公式:V=abh,代入数据即可求解;
(2)求的是长方体的表面积,这个长方体的表面由五个长方形组成,缺少上面,最后计算这五个面的面积,解决问题。
【详解】
(1)
=320×2.5
=800(立方米)
答:这个蓄水池可以存水800立方米。
(2)
=320+2×90
=500(平方米)
答:铺瓷砖部分的面积是500平方米。
【点睛】
此题重点考查学生对长方体表面积和体积计算公式的掌握与运用情况。在计算表面积时,要分清需要计算几个长方形面的面积,缺少的是哪一个面的面积。
16.块
【分析】
长方体鱼池内壁和底面贴上瓷砖,即需要算出长方体的一个底面积和侧面积,可根据长方体的表面积公式进行求解,由于只是铺设5个面,因此只需要计算5个面。再将单位化为统一,即可算出需要瓷砖的块数
解析:块
【分析】
长方体鱼池内壁和底面贴上瓷砖,即需要算出长方体的一个底面积和侧面积,可根据长方体的表面积公式进行求解,由于只是铺设5个面,因此只需要计算5个面。再将单位化为统一,即可算出需要瓷砖的块数。
【详解】
这个长方体鱼池内壁需要贴瓷砖的面积为:
(m2);
56m2=5600dm2,则所需瓷砖为:(块)。
答:一共需要瓷砖1400块。
【点睛】
本题主要考查的是长方体表面积公式的实际应用,解题时需要注意长方体鱼池中只需要铺设5个面,即计算4个侧面积加上一个底面积。
17.2000厘米
【分析】
熔铸铁块,熔铸前后体积不变,再结合V长方体=底面积×高,可列方程,解答即可。
【详解】
解:设铸成的长方体的高是x米,
4×4×x=64×5
16x=320
x=20
20米
解析:2000厘米
【分析】
熔铸铁块,熔铸前后体积不变,再结合V长方体=底面积×高,可列方程,解答即可。
【详解】
解:设铸成的长方体的高是x米,
4×4×x=64×5
16x=320
x=20
20米=2000厘米
答:铸成的长方体的高是2000厘米。
【点睛】
本题值得注意的地方:题目中条件部分单位都是米,而问题处却是厘米,故不要忘了将米换算成厘米这一步骤。
18.5厘米
【分析】
先利用长方体的体积公式:V=abh,求出水的体积,又因这些水的体积是不变,用这些水的体积除以乙容器的底面积,就是乙容器中水面的高度,再乙容器的高度减去乙容器中水面高度,即可解答.
解析:5厘米
【分析】
先利用长方体的体积公式:V=abh,求出水的体积,又因这些水的体积是不变,用这些水的体积除以乙容器的底面积,就是乙容器中水面的高度,再乙容器的高度减去乙容器中水面高度,即可解答.
【详解】
乙容器中水面的高度:
30×25×10÷(25×20)
=7500÷500
=15(厘米)
20-15=5(厘米)
答:乙容器的水距容器口有5厘米。
【点睛】
此题主要考查长方体的体积的灵活运用。
19.7米
【分析】
将正方体钢块锻造成长方体钢锭时,体积不变。根据正方体的体积=棱长×棱长×棱长,先求出正方体钢块的体积,也是长方体钢锭的体积,然后用长方体钢锭的体积÷长方体钢锭的横截面的面积=钢锭的长
解析:7米
【分析】
将正方体钢块锻造成长方体钢锭时,体积不变。根据正方体的体积=棱长×棱长×棱长,先求出正方体钢块的体积,也是长方体钢锭的体积,然后用长方体钢锭的体积÷长方体钢锭的横截面的面积=钢锭的长,最后将分米化成米即可。
【详解】
6×6×6
=36×6
=216(dm3)
216÷8=27(分米)=2.7(米)
答:这根钢锭长2.7米。
【点睛】
本题主要考查体积的等积变形,抓住体积不变是解决此类问题的关键。
20.1立方分米
【分析】
将15厘米化成1.5分米,再根据长方体的体积公式,求出石头浸没水中后水和石头的体积和。最后,将其减去水的体积,求出石头的体积即可。
【详解】
15厘米=1.5分米,5升=5立方
解析:1立方分米
【分析】
将15厘米化成1.5分米,再根据长方体的体积公式,求出石头浸没水中后水和石头的体积和。最后,将其减去水的体积,求出石头的体积即可。
【详解】
15厘米=1.5分米,5升=5立方分米
2×2×1.5-5
=6-5
=1(立方分米)
答:石头的体积是1立方分米。
【点睛】
本题考查了长方体的体积,长方体体积=长×宽×高。
21.如图:
【解析】
【详解】
略
解析:如图:
【解析】
【详解】
略
22.见详解
【分析】
(1)根据轴对称图形的意义:如果一个平面图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做这个图形的对称轴;
(2)根据平移的特征,把图形A
解析:见详解
【分析】
(1)根据轴对称图形的意义:如果一个平面图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做这个图形的对称轴;
(2)根据平移的特征,把图形A的各顶点分别向右平移6格,依次连结即可得到向右平移5格后的图形;用同样的方法即可把平移后的图形再向下平移2格后的图形;
(3)图形A的面积是由三角形面积加正方形面积的和,根据图形A的面积确定所画平行四边形的底和高,即可画图。
【详解】
(1)根据轴对称图形的意义画图如下:
(2)把这个平行四边形先向右移动6格再向下移动2格(图中红色部分)画出移动后的图形位置;
(3)图形A的面积:
4×2÷2+2×2
=4+4
=8(平方厘米)
根据平行四边形的面积为8平方厘米,可确定底为4厘米,高为2厘米(答案不唯一)。
【点睛】
此题考查的是平移、轴对称,掌握轴对称图形的意义及确定轴对称图形对称轴的条数及位置、平面图形面积的计算等是解题关键。
23.见详解
【分析】
(1)将小鱼的各个顶点向上平移4格,然后连线即可。
(2)在(1)的基础上再将小鱼向左平移5个即可。
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴
解析:见详解
【分析】
(1)将小鱼的各个顶点向上平移4格,然后连线即可。
(2)在(1)的基础上再将小鱼向左平移5个即可。
(3)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的另一边画出左图的对称点,依次连结即可。
【详解】
由分析可知,如图所示:
【点睛】
本题是考查作轴对称图形,关键是把对称点的位置画正确。
24.见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可;
(2)根据旋转的特征,图②绕点C逆时针旋转90°
解析:见详解
【分析】
(1)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,依次连结即可;
(2)根据旋转的特征,图②绕点C逆时针旋转90°,点C的位置不动,其余各部分均绕此点按相同的方向旋转相同的度数,即可画出旋转后的图形;
(3)再根据平移的特点:将旋转后的三角形向石平移5格,作图即可。
【详解】
如图所示:
【点睛】
求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点后依次连结各特征点即可;旋转作图要注意:①旋转方向;②旋转角度;平移时要注意:大小、形状不变,只是位置变了。
25.8厘米
【分析】
先根据长方体的体积公式V=abh,求出长方体内水的体积,由于水的体积不变,把长方体的右面作为底面,所以用水的体积除以右面那个面的底面积就是水面的高度,据此解答。
【详解】
12×1
解析:8厘米
【分析】
先根据长方体的体积公式V=abh,求出长方体内水的体积,由于水的体积不变,把长方体的右面作为底面,所以用水的体积除以右面那个面的底面积就是水面的高度,据此解答。
【详解】
12×10×6÷(10×15)
=720÷150
=4.8(厘米)
答:水的高度会是4.8厘米。
【点睛】
解答此题应抓住水的体积不变,用水的体积除以长方体容器的底面积(右面的面积),就是水面的高度。
26.(1)6
(2)4
(3)140立方厘米
【分析】
(1)在一个长,宽,高的长方体彩泥块中(如下图),切出一个最大的正方体。这个正方体的棱长等于这个长方体的高。
(2)剩下的彩泥块的长是(10-6)
解析:(1)6
(2)4
(3)140立方厘米
【分析】
(1)在一个长,宽,高的长方体彩泥块中(如下图),切出一个最大的正方体。这个正方体的棱长等于这个长方体的高。
(2)剩下的彩泥块的长是(10-6)cm, 宽,高,再在剩下的彩泥块中切出一个最大的正方体。这个正方体的棱长等于现在这个彩泥块的长。
(3)根据长方体的体积=长×宽×高,求出开始长方体彩泥的体积;根据正方体的体积=棱长×棱长×棱长,分别求出第一次得到的正方体的体积和第二次得到的正方体的体积,最后用开始长方体彩泥的体积减去两次得到正方体体积的和即可求出答案。
【详解】
(1)第一次得到的正方体棱长是7厘米。
(2)10-6=4(厘米)
第二次得到的正方体棱长是4厘米。
(3)10×7×6
=70×6
=420(立方厘米);
6×6×6
=36×6
=216(立方厘米);
4×4×4
=16×4
=64(立方厘米);
420-(216+64)
=420-280
=140(立方厘米)
答:剩下彩泥的体积一共是140立方厘米。
【点睛】
本题考查了长方体、正方体的体积公式。每次切出最大正方体的棱长是长方体长、宽、高最小的一个,这是解题的关键。
27.(1)7;10
(2)7
(3)下降
(4)
【分析】
(1)(2)(3)观察统计图,直接填空即可;
(4)9月冰箱和空调的销售量分别是25台、40台,据此利用除法求出冰箱的
解析:(1)7;10
(2)7
(3)下降
(4)
【分析】
(1)(2)(3)观察统计图,直接填空即可;
(4)9月冰箱和空调的销售量分别是25台、40台,据此利用除法求出冰箱的销售量是空调的几分之几。
【详解】
(1)西关家电城7月的空调销售量最多,10月的冰箱销售量最少。
(2)西关家电城空调和冰箱的销售量7月相差最多。
(3)7月后空调的销售量呈现下降趋势。
(4)25÷40=,所以,西关家电城9月冰箱的销售量是空调的。
【点睛】
本题考查了复式折线统计图的应用,能从统计图中获取有用信息是解题的关键。
28.(1)图见详解;(2)①7;②30;③110;④30
【分析】
(1)根据表格中的数据,描点连线即可;
(2)①观察统计图,找出纵坐标距离相差最大的两点对应的月份即可;
②6月份收入-6月份支出即可
解析:(1)图见详解;(2)①7;②30;③110;④30
【分析】
(1)根据表格中的数据,描点连线即可;
(2)①观察统计图,找出纵坐标距离相差最大的两点对应的月份即可;
②6月份收入-6月份支出即可。
③第四季度的收入总和-第四季度的支出总和即可;
④全年的支出总和÷12即可。
【详解】
(1)作图如下:
(2)①7月份收入和支出相差最大。
②60-30=30(万元)
6月份收入和支出相差30万元。
③(80+90+80)-(50+40+50)
=250-140
=110(万元)
第四季度实际收入110万元。
④(20+30+10+20+20+30+20+30+40+50+40+50)÷12
=360÷12
=30(万元)
平均每月支出30万元。
【点睛】
此题考查了折线统计图的绘制以及相关应用,能够根据问题从统计图中提取有效数学信息是解题关键。
展开阅读全文