资源描述
人教版初二上册压轴题强化数学综合试卷含答案
1.如图1,在平面直角坐标系中,直线AB分别交y轴、x轴于点A(0,a),点B(b,0),且a、b满足a2-4a+4+=0.
(1)求a,b的值;
(2)以AB为边作Rt△ABC,点C在直线AB的右侧,且∠ACB=45°,求点C的坐标;
(3)若(2)的点C在第四象限(如图2),AC与 x轴交于点D,BC与y轴交于点E,连接 DE,过点C作CF⊥BC交x轴于点F.
①求证:CF=BC;
②直接写出点C到DE的距离.
2.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设,.
①如图2,当点在线段BC上移动,则,之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则,之间有怎样的数量关系?请直接写出你的结论.
3.如图1,在平面直角坐标系中, ,动点从原点出发沿轴正方向以的速度运动,动点也同时从原点出发在轴上以的速度运动,且满足关系式,连接,设运动的时间为秒.
(1)求的值;
(2)当为何值时,
(3)如图2,在第一象限存在点,使,求.
4.在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称.
(1)如图1,OA=OB,AF平分∠BAC交BC于F,BE⊥AF交AC于E,请直接写出EF与EC的数量关系为 ;
(2)如图2,AF平分∠BAC交BC于F,若AF=2OB,求∠ABC的度数;
(3)如图3,OA=OB,点G在BO的垂直平分线上,作∠GOH=45°交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系.
5.等腰Rt△ABC中,∠BAC=90°,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E.
(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;
(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE.求证:∠ADB=∠CDE;
(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角△BOD和等腰直角△ABC,连结CD交,轴于点P,问当点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度.
6.如图,在等边中,,分别为,边上的点,,.
(1)如图1,若点在边上,求证:;
(2)如图2,连.若,求证:;
(3)如图3,是的中点,点在内,,点,分别在,上,,若,直接写出的度数(用含有的式子表示).
7.[背景]角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题.
[问题]在四边形ABDE中,C是BD边的中点.
(1)如图1,若AC平分∠BAE,∠ACE=90°,则线段AE、AB、DE的长度满足的数量关系为______;(直接写出答案)
(2)如图2,AC平分∠BAE,EC平分∠AED,若∠ACE=120°,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;
(3)如图3,若∠ACE=120°,AB=4,DE=9,BD=12,则AE的最大值是______.(直接写出答案)
8.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上一点,且DE=CE,连接BD,CD.
(1)判断与的位置关系和数量关系,并证明;
(2)如图2,若将△DCE绕点E旋转一定的角度后,BD与AC的位置关系和数量关系是否发生变化?并证明;
(3)如图3,将(2)中的等腰直角三角形都换成等边三角形,其他条件不变,求BD与AC夹角的度数.
【参考答案】
2.(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1.
【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案;
(2)分两种情况:∠BAC=9
解析:(1)a=2,b=-1;(2)满足条件的点C(2,1)或(1,-1);(3)①证明见解析;②1.
【分析】(1)可得(a−2)2+=0,由非负数的性质可得出答案;
(2)分两种情况:∠BAC=90°或∠ABC=90°,根据等腰直角三角形的性质及全等三角形的性质可求出点C的坐标;
(3)①如图3,过点C作CL⊥y轴于点L,则CL=1=BO,根据AAS可证明△BOE≌△CLE,得出BE=CE,根据ASA可证明△ABE≌△BCF,得出BE=CF,则结论得证;
②如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,根据SAS可证明△CDE≌△CDF,可得∠BAE=∠CBF,由角平分线的性质可得CK=CH=1.
【详解】(1)∵a2−4a+4+=0,
∴(a−2)2+=0,
∵(a-2)2≥0,≥0,
∴a-2=0,2b+2=0,
∴a=2,b=-1;
(2)由(1)知a=2,b=-1,
∴A(0,2),B(-1,0),
∴OA=2,OB=1,
∵△ABC是直角三角形,且∠ACB=45°,
∴只有∠BAC=90°或∠ABC=90°,
Ⅰ、当∠BAC=90°时,如图1,
∵∠ACB=∠ABC=45°,
∴AB=CB,
过点C作CG⊥OA于G,
∴∠CAG+∠ACG=90°,
∵∠BAO+∠CAG=90°,
∴∠BAO=∠ACG,
在△AOB和△BCP中,
,
∴△AOB≌△CGA(AAS),
∴CG=OA=2,AG=OB=1,
∴OG=OA-AG=1,
∴C(2,1),
Ⅱ、当∠ABC=90°时,如图2,
同Ⅰ的方法得,C(1,-1);
即:满足条件的点C(2,1)或(1,-1)
(3)①如图3,由(2)知点C(1,-1),
过点C作CL⊥y轴于点L,则CL=1=BO,
在△BOE和△CLE中,
,
∴△BOE≌△CLE(AAS),
∴BE=CE,
∵∠ABC=90°,
∴∠BAO+∠BEA=90°,
∵∠BOE=90°,
∴∠CBF+∠BEA=90°,
∴∠BAE=∠CBF,
在△ABE和△BCF中,
,
∴△ABE≌△BCF(ASA),
∴BE=CF,
∴CF=BC;
②点C到DE的距离为1.
如图4,过点C作CK⊥ED于点K,过点C作CH⊥DF于点H,
由①知BE=CF,
∵BE=BC,
∴CE=CF,
∵∠ACB=45°,∠BCF=90°,
∴∠ECD=∠DCF,
∵DC=DC,
∴△CDE≌△CDF(SAS),
∴∠BAE=∠CBF,
∴CK=CH=1.
【点睛】此题考查三角形综合题,非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,坐标与图形的性质,等腰三角形的性质,点到直线的距离,角平分线的性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
3.(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB
解析:(1)90;(2)①,理由见解析;②当点D在射线BC.上时,a+β=180°,当点D在射线BC的反向延长线上时,a=β.
【分析】(1)可以证明△BAD≌△CAE,得到∠B=∠ACE,证明∠ACB=45°,即可解决问题;
(2)①证明△BAD≌△CAE,得到∠B=∠ACE,β=∠B+∠ACB,即可解决问题;
②证明△BAD≌△CAE,得到∠ABD=∠ACE,借助三角形外角性质即可解决问题.
【详解】解:(1)∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∵∠DAE=∠BAC,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE(SAS)
∴∠ABC=∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=90°,
故答案为:;
(2)①.
理由:∵,
∴.
即.
又,
∴.
∴.
∴.
∴.
∵,
∴.
②如图:当点D在射线BC上时,α+β=180°,连接CE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
在△ABC中,∠BAC+∠B+∠ACB=180°,
∴∠BAC+∠ACE+∠ACB=∠BAC+∠BCE=180°,
即:∠BCE+∠BAC=180°,
∴α+β=180°,
如图:当点D在射线BC的反向延长线上时,α=β.连接BE,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
又∵AB=AC,AD=AE,
∴△ABD≌△ACE(SAS),
∴∠ABD=∠ACE,
∴∠ABD=∠ACE=∠ACB+∠BCE,
∴∠ABD+∠ABC=∠ACE+∠ABC=∠ACB+∠BCE+∠ABC=180°,
∵∠BAC=180°-∠ABC-∠ACB,
∴∠BAC=∠BCE.
∴α=β;
综上所述:点D在直线BC上移动,α+β=180°或α=β.
【点睛】该题主要考查了等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点及其应用问题;应牢固掌握等腰直角三角形的性质、全等三角形的判定及其性质等几何知识点.
4.(1);(2);(3)
【分析】(1)把满足的关系式转化为非负数和的形式即可解答;
(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;
【详解】解:(1)
(
解析:(1);(2);(3)
【分析】(1)把满足的关系式转化为非负数和的形式即可解答;
(2)画出图形,动点运动方向有两种情况,分情况根据列方程解答即可;
【详解】解:(1)
(2)当动点沿轴正方向运动时,如解图-2-1:
当动点沿轴负方向运动时,如解图-2-2:
(3)过作,连
在与
∴,
在与中
∴,,
∴,,
∴是等边三角形,
∴,
又∵
∴
∵
∴
【点睛】本题是三角形综合题,考查了等腰直角三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,添加恰当辅助线构造三角形是本题的关键.
5.(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取
解析:(1)EF=EC
(2)72°
(3)GH=GO,GH⊥GO
【分析】(1)如图1中,设AF交BE于点J.首先证明AB=AE,再证明∠AEF=∠ABF=90°,可得结论;
(2)如图2中,取CF的中点T,连接OT.由OA=OC,BO⊥AC,推出BA=BC,推出∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,利用三角形内角和定理,构建方程求解即可;
(3)结论:OG=GH,OG⊥GH.如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.证明∠GOH′=GOH=45°,推出点H与点H′重合,可得结论.
(1)解:(1)结论:EF=EC.理由:如图1中,设AF交BE于点J.∵AF平分∠BAC,∴∠BAF=∠CAF,∵BE⊥AF,∴∠BAF+∠ABE=90°,∠CAF+∠AEB=90°,∴∠ABE=∠AEB,∴AB=AE,∵A,C关于y轴对称,∴OA=OC,∵OA=OB,∴OA=OB=OC,∴∠OAB=∠OBA=45°,∠OCB=∠OBC=45°,∴∠ABC=90°,在△ABF和△AEF中,,∴△ABF≌△AEF(SAS),∴∠AEF=∠ABF=90°,∴∠CEF=90°,∴∠ECF=∠EFC=45°,∴EF=EC;
(2)解:如图2中,取CF的中点T,连接OT.∵AO=OC,FT=TC,∴OT∥AF,OT=AF,∵AF=2OB,∴OB=OT,∴∠OBT=∠OTB,∵OA=OC,BO⊥AC,∴BA=BC,∴∠BAC=∠BCA,∠ABO=∠CBO,设∠BAC=∠BCA=2α,∵AF平分∠BAC,∴∠BAF=∠CAF=α,∵OT∥AF,∴∠TOC=∠CAF=α,∴∠OBT=∠OTB=∠TOC+∠TCO=3α,∵∠OBC+∠OCB=90°,∴5α=90°,∴α=18°,∴∠OBC=36°,∴∠ABC=2∠OBC=72°;
(3)解:结论:OG=GH,OG⊥GH.理由:如图3中,连接GB,在BA上取一点H′,使得GB=GH′,连接OH′,设AB交DG于点W,交OG于点K,连接OW.设∠OGB=m,∠OGH′=n,∵GD垂直平分线段OB,∴GB=GO,∠DGB=∠DGO=m,∵GB=GO=GH′,∴∠GH′O=(180°-n)=90°-n,∠GH′B=(180°-m-n)=90°-m-n,∴∠KH′O=∠GH′O-∠GH′B=90°-n-(90°-m-n)=m,∴∠KH′O=∠KGW,∵∠GKW=∠H′KO,∴∠H′OK=∠GWK,∵DG∥OA,∴∠GWK=∠OAB=45°,∴∠COH′=45°,∵∠COH=45°,∴∠COH=∠COH′,∴点H与点H′重合,∴OG=GH,∴∠GHO=∠GOH=45°,∴∠OGH=90°,∴GH=GO,GH⊥GO.
【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题.
6.(1)A(0,1);
(2)见解析;
(3)不变,BP= 2.
【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易
解析:(1)A(0,1);
(2)见解析;
(3)不变,BP= 2.
【分析】(1)如图(1),过点C作CF⊥y轴于点F,构建全等三角形:△ACF≌△ABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;
(2)过点C作CG⊥AC交y轴于点G,则△ACG≌△ABD(ASA),即得CG=AD=CD,∠ADB=∠G,由∠DCE=∠GCE=45°,可证△DCE≌△GCE(SAS)得∠CDE=∠G,从而得到结论;
(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E,构建全等三角形:△CBE≌△BAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4.再结合已知条件和全等三角形的判定定理AAS得到:△CPE≌△DPB,故BP=EP=2.
(1)如图(1),过点C作CF⊥y轴于点F,∵CF⊥y轴于点F,∴∠CFA=90°,∠ACF+∠CAF=90°,∵∠CAB=90°,∴∠CAF+∠BAO=90°,∴∠ACF=∠BAO,在△ACF和△ABO中,,∴△ACF≌△ABO(AAS),∴CF=OA=1,∴A(0,1);
(2)如图2,过点C作CG⊥AC交y轴于点G,∵CG⊥AC,∴∠ACG=90°,∠CAG+∠AGC=90°,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∴∠AGC=∠ADO,在△ACG和△ABD中,,∴△ACG≌△ABD(AAS),∴CG=AD=CD,∠ADB=∠G,∵∠ACB=45°,∠ACG=90°,∴∠DCE=∠GCE=45°,在△DCE和△GCE中,,∴△DCE≌△GCE(SAS),∴∠CDE=∠G,∴∠ADB=∠CDE;
(3)BP的长度不变,理由如下:如图(3),过点C作CE⊥y轴于点E.∵∠ABC=90°,∴∠CBE+∠ABO=90°.∵∠BAO+∠ABO=90°,∴∠CBE=∠BAO.∵∠CEB=∠AOB=90°,AB=AC,∴△CBE≌△BAO(AAS),∴CE=BO,BE=AO=4.∵BD=BO,∴CE=BD.∵∠CEP=∠DBP=90°,∠CPE=∠DPB,∴△CPE≌△DPB(AAS),∴BP=EP=2.
【点睛】本题考查了三角形综合题.主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形.
7.(1)见解析
(2)见解析
(3)
【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可
解析:(1)见解析
(2)见解析
(3)
【分析】(1)连接DF,根据“有一个角是60°的等腰三角形是等边三角形”可判断△DEF是等边三角形,则DF=EF,又△ABC是等边三角形,根据三角形内角和可得出,∠AFD=∠FEC,所以△ADF≌△CFE(AAS),则AD=CF;
(2)过点F作JKAC交AB于点J,交BC于点K,过点F作PIAB交AC于P,交BC于点I,连接DF,则△BJK和△CPI是等边三角形,△BDE≌△JFD≌KEF,所以DJ=BE=FK,因为ABPI,FKAC,所以四边形AJFP是平行四边形,则AJ=PF,易得△CPI为等边三角形,由∠FCB=30°可得CF平分∠PCI,则FI=FP,所以FP=AJ,FK=BE=DJ,FI=FK,所以AJ=DJ=BE,即AD=AJ+DJ=2BE;
(3)延长MO到点G,使OG=OM,连接NG,BG,NM,作∠ACQ=∠ABN,且使CQ=BN,连接MQ,AQ,先得到△BOG≌△COM(SAS),再得到△ACQ≌△ABN(SAS)和△BNG≌△CQM(SAS),所以∠NAM=∠MAQ=∠CAM+∠CAQ=∠CAM+∠BAN,所以∠CAM+∠BAN=30°,则∠CAM=,所以∠BAN=30°-.
(1)
证明:如图,连接,
,,
∵是等边三角形,
∴,
∵是等边三角形,
∴,
,
,
,
,,
,
;
(2)
证明:如图,过点作交于点,交于点,过点作交于,交于点,连接,
,
,
和是等边三角形,
,,
是等边三角形,
由(1)中结论可知,,
,
,,
四边形是平行四边形,
,
,
,
为等边三角形,,
,
平分,
是等边三角形,
,
,
,,
,即;
(3)
如图,延长到点,使,连接,,,作,且使,连接,,
,,
,
,,,
,
,,
,
,
,
,
是等边三角形,
,
,
,,
,,,
,
,,
,,
,
,,
,
,
,
,
,,
,
,
又,
,
,
.
【点睛】本题属于三角形的综合题,涉及全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形三线合一等知识,类比思想及构造的思想进行分析,仿造(1)中的结论构造出全等三角形是解题关键.
8.(1)AE=AB+DE
(2)AE=AB+DE+BD
(3)
【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△
解析:(1)AE=AB+DE
(2)AE=AB+DE+BD
(3)
【分析】(1)在AE上取一点F,使AF=AB,及可以得出△ACB≌△ACF,就可以得出BC=FC,∠ACB=∠ACF,就可以得出△CEF≌△CED.就可以得出结论;
(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.可以求得CF=CG,△CFG是等边三角形,就有FG=CG=BD,进而得出结论;
(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG.根据两点之间线段最短解决问题即可.
(1)
AE=AB+DE;
理由:在AE上取一点F,使AF=AB,
∵AC平分∠BAE,
∴∠BAC=∠FAC.
在△ACB和△ACF中,
,
∴△ACB≌△ACF(SAS),
∴BC=FC,∠ACB=∠ACF.
∵C是BD边的中点.
∴BC=CD,
∴CF=CD.
∵∠ACE=90°,
∴∠ACB+∠DCE=90°,∠ACF+∠ECF=90°
∴∠ECF=∠ECD.
在△CEF和△CED中,
,
∴△CEF≌△CED(SAS),
∴EF=ED.
∵AE=AF+EF,
∴AE=AB+DE,
故答案为:AE=AB+DE;
(2)
猜想:AE=AB+DE+BD.
证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG.
∵C是BD边的中点,
∴CB=CD=BD.
∵AC平分∠BAE,
∴∠BAC=∠FAC.
在△ACB和△ACF中,
∴△ACB≌△ACF(SAS),
∴CF=CB,
∴∠BCA=∠FCA.
同理可证:CD=CG,
∴∠DCE=∠GCE.
∵CB=CD,
∴CG=CF
∵∠ACE=120°,
∴∠BCA+∠DCE=180°-120°=60°.
∴∠FCA+∠GCE=60°.
∴∠FCG=60°.
∴△FGC是等边三角形.
∴FG=FC=BD.
∵AE=AF+EG+FG.
∴AE=AB+DE+BD.
(3)
作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示:
∵C是BD边的中点,
∴CB=CD=BD=,
∵△ACB≌△ACF(SAS),
∴CF=CB=,
∴∠BCA=∠FCA,
同理可证:CD=CG=,
∴∠DCE=∠GCE,
∵CB=CD,
∴CG=CF,
∵∠ACE=120°,
∴∠BCA+∠DCE=180°-120°=60°,
∴∠FCA+∠GCE=60°,
∴∠FCG=60°,
∴△FGC是等边三角形,
∴FC=CG=FG=,
∵AE≤AF+FG+EG,
∴当A、F、G、E共线时AE的值最大,最大值为.
故答案为:.
【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键.
9.(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关
解析:(1), ;(2), ;(3).
【分析】(1)先判断出,再判定,再判断,
(2)先判断出,再得到同理(1)可得结论;
(3)先判断出,再判断出,最后计算即可.
【详解】解:(1)与的位置关系是:,数量关系是.
理由如下:
如图1,延长交于点.
于,
.
,,
,
,,.
,
.
AE⊥BC
∴,
,
.
(2)与的位置关系是:,数量关系是.
如图,线段AC与线段BD交于点F,线段AE与线段BD交于点G,
,
,
即.
,,
,
,.
AE⊥BC
∴,
又∵
,
.
(3)如图,线段AC与线段BD交于点F,
和是等边三角形,
,,,,
,
,
在和中,
,
∴,
,
与的夹角度数为.
【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,等边三角形的性质,判断垂直的方法,解本题的关键是判断.
展开阅读全文