资源描述
初二上册压轴题强化数学综合试题带答案
2.已知△ABC是等边三角形,△ADE的顶点D在边BC上
(1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数;
(2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF;
(3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由.
2.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.
(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°.
①求证:AD=BE;
②求∠AEB的度数.
(2)如图2,若∠ACB=∠DCE=90°,CF为△DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论.
3.已知,.
(1)若,作,点在内.
①如图1,延长交于点,若,,则的度数为 ;
②如图2,垂直平分,点在上,,求的值;
(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.
4.在等腰三角形ABC中,AB=AC,点D是AC上一动点,在BD的延长线上取一点E满足:AE=AB;AF平分∠CAE交BE于点F.
(1)如图1,连CF,求证:△ACF≌△AEF.
(2)如图2,当∠ABC=60°时,线段AF,EF,BF之间存在某种数量关系,写出你的结论并加以证明.
(3)如图3,当∠ACB=45°时,且AE∥BC,若EF=3,请直接写出线段BD的长是 (只填写结果).
5.如图1,在平面直角坐标系中,,,且∠ACB=90°,AC=BC.
(1)求点B的坐标;
(2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由;
(3)如图3,若在点B处有一个等腰Rt△BDG,且BD=DG,∠BDG=90°,连接AG,点H为AG的中点,试猜想线段DH与线段CH的数量关系与位置关系,并证明你的结论.
6.如图,在等边△ABC中,AB=AC=BC=6cm,现有两点M、N分别从点A、B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次回到点B时,点M、N同时停止运动,设运动时间为ts.
(1)当t为何值时,M、N两点重合;
(2)当点M、N分别在AC、BA边上运动,△AMN的形状会不断发生变化.
①当t为何值时,△AMN是等边三角形;
②当t为何值时,△AMN是直角三角形;
(3)若点M、N都在BC边上运动,当存在以MN为底边的等腰△AMN时,求t的值.
7.方法探究:
已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x+3).设另一个因式为(x+k),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:.我们把以上分解因式的方法叫“试根法”.
问题解决:
(1)对于二次多项式,我们把x= 代入该式,会发现成立;
(2)对于三次多项式,我们把x=1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;
(3)对于多项式,用“试根法”分解因式.
8.如图1,在平面直角坐标系中,点在x轴负半轴上,点B在y轴正半轴上,设,且.
(1)直接写出的度数.
(2)如图2,点D为AB的中点,点P为y轴负半轴上一点,以AP为边作等边三角形APQ,连接DQ并延长交x轴于点M,若,求点M的坐标.
(3)如图3,点C与点A关于y轴对称,点E为OC的中点,连接BE,过点B作,且,连接AF交BC于点P,求的值.
【参考答案】
2.(1)60°;(2)见解析;(3)不变,
【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;
(2)由题意,先求出∠BEC=30°,然后求出∠CF
解析:(1)60°;(2)见解析;(3)不变,
【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;
(2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;
(3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案.
【详解】解:(1)根据题意,
∵AD=DE,∠AED=60°,
∴△ADE是等边三角形,
∴AD=AE,∠DAE=60°,
∵AB=AC,∠BAC=60°,
∴,
即,
∴△BAD≌△CAE,
∴∠ACE=∠B=60°;
(2)连CF,如图:
∵AB=AC=AE,
∴∠AEB=∠ABE,
∵∠BAC=60°,∠EAC=90°,
∴∠BAE=150°,
∴∠AEB=∠ABE=15°;
∵△ACE是等腰直角三角形,
∴∠AEC=45°,
∴∠BEC=30°,∠EBC=45°,
∵AD垂直平分BC,点F在AD上,
∴CF=BF,
∴∠FCB=∠EBC=45°,
∴∠CFE=90°,
在直角△CEF中,∠CFE=90°,∠CEF=30°,
∴CE=2CF=2BF;
(3)延长AE至F,使EF=AE,连DF、CF,如图:
∵∠AED=90°,EF=AE,
∴DE是中线,也是高,
∴△ADF是等腰三角形,
∵∠ADE=30°,
∴∠DAE=60°,
∴△ADF是等边三角形;
由(1)同理可求∠ACF=∠ABC=60°,
∴∠ACF=∠BAC=60°,
∴CF∥AB,
过E作EG⊥CF于G,延长GE交BA的延长线于点H,
易证△EGF≌△EHA,
∴EH=EG=HG,
∵HG是两平行线之间的距离,是定值,
∴S△ABE=S△ABC=;
【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.
3.(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全
解析:(1)①见解析;②80°;(2)AE=2CF+BE,理由见解析.
【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;
②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;
(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.
【详解】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,
∴∠ACB=∠DCE=180°﹣2×50°=80°,
∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,
∴∠ACD=∠BCE,
∵△ACB,△DCE都是等腰三角形,
∴AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE(SAS),
∴AD=BE.
②解:∵△ACD≌△BCE,
∴∠ADC=∠BEC,
∵点A、D、E在同一直线上,且∠CDE=50°,
∴∠ADC=180°﹣∠CDE=130°,
∴∠BEC=130°,
∵∠BEC=∠CED+∠AEB,∠CED=50°,
∴∠AEB=∠BEC﹣∠CED=80°.
(2)结论:AE=2CF+BE.
理由:∵△ACB,△DCE都是等腰直角三角形,
∴∠CDE=∠CED=45°,
∵CF⊥DE,
∴∠CFD=90°,DF=EF=CF,
∵AD=BE,
∴AE=AD+DE=BE+2CF.
【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键.
4.(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证
解析:(1)①15°;②;(2)
【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;
②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.
(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.
【详解】(1)①连接AE,在,因为,,
,,
,,
,
,
,
,,
,
,
,
故答案为:.
②过C作交DF延长线于G,连接AE
AD垂直平分BE,
,
,
,
,
故答案为:;
(2)以AB向下构造等边,连接DK,
延长AD,BK交于点T,
,,
,
,
,,
等边中,,,
,,
在和中,
,
等边三角形三线合一可知,BD是边AK的垂直平分线,
,
,
,
,
故答案为:.
【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.
5.(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由
解析:(1)证明见解析
(2),证明见解析
(3)6
【分析】(1)由角平分线的定义可知,再根据等量代换得出AC =AE,由此可直接利用“SAS”证明;
(2)在BE上截取BM=CF,连接AM.由所作辅助线易证,得出,.由题意易判断为等边三角形,即可求出,即说明为等边三角形,得出,由此即得出;
(3)延长BA,CF交于点N.由题意可知为等腰直角三角形,即,.根据平行线的性质和等边对等角即得出BE为的角平分线,从而可求出,进而可求出.由角平分线的性质可得出,从而可求出.又易证,即得出.
(1)
∵AF平分∠CAE,
∴.
∵AB=AC,AB=AE,
∴AC =AE.
又∵AF=AF,
∴.
(2)
证明:∵,
∴,.
如图,在BE上截取BM=CF,连接AM.
在和中,,
∴,
∴,.
∵,,
∴为等边三角形,
∴.
∵,
∴,即,
∴为等边三角形,
∴,
∴.
即AF,EF,BF之间存在的关系为:;
(3)
如图,延长BA,CF交于点N.
∵,,
∴为等腰直角三角形,
∴,.
∵AE∥BC,
∴.
∵,
∴,
∴.
由(1)可知,
∴,
∴,即.
∵为的角平分线,
∴.
∵,
∴,即.
在和中,,
∴,
∴.
故答案为:6.
【点睛】本题为三角形综合题,考查等边三角形的判定和性质,等腰直角三角形的判定和性质,三角形全等的判定和性质,角平分线的定义和性质,平行线的性质以及三角形内角和定理,综合性强,较难.解题关键是学会添加常用的辅助线,构造全等三角形解决问题.
6.(1)
(2),见解析
(3)且,见解析
【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT=
解析:(1)
(2),见解析
(3)且,见解析
【分析】(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.证明△ATC≌△CHB(AAS),推出AT=CH=6,CT=BH=2,可得结论;
(2)结论:MN=ME+NF.证明△BFN≌△BEK(SAS),推出BN=BK,∠FBN=∠EBK,再证明△BMN≌△BMK(SAS),推出MN=MK,可得结论;
(3)结论:DH=CH,DH⊥CH.如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M.证明△JDC是等腰直角三角形,可得结论.
【详解】解:(1)如图1中,过点C作CT⊥y轴于点T,根点B作BH⊥CT交CT的延长线于点H.
∵A(0,4),C(﹣2,﹣2),
∴OA=4,OT=CT=2,
∴AT=4+2=6,
∵∠ACB=∠ATC=∠H=90°,
∴∠CAT+∠ACT=90°,∠BCH+∠CBH=90°,
∴∠CAT=∠BCH,
∵CA=CB,
∴△ATC≌△CHB(AAS),
∴AT=CH=6,CT=BH=2,
∴TH=CH﹣CT=4,
∴B(4,-4);
(2)结论:MN=ME+NF.
理由:在射线OE上截取EK=FN,连接BK.
∵B(4,4),BE⊥y轴,BF⊥x轴,
∴BE=BF=4,∠BEO=∠BFO=∠EOF=90°,
∴四边形BEOF是矩形,
∴∠EBF=90°,
∵EK=FN,∠BFN=∠BEK=90°,
∴△BFN≌△BEK(SAS),
∴BN=BK,∠FBN=∠EBK,
∴∠NBK=∠FBE=90°,
∵∠MBN=45°,
∴∠MBN=∠BMK=45°,
∵BM=BM,
∴△BMN≌△BMK(SAS),
∴MN=MK,
∵MK=ME+EK,
∴MN=EM+FN;
(3)结论:DH=CH,DH⊥CH.
理由:如图3中,延长DH到J,使得HJ=DH,连接AJ,CJ,延长DG交AC于点M.
∵AH=HG,∠AHJ=∠GHD,HJ=HD,
∴△AHJ≌△GHD(SAS),
∴AJ=DG,∠AJH=∠DGH,
∴AJ∥DM,
∴∠JAC=∠AMD,
∵DG=BD,
∴AJ=BD,
∵∠MCB=∠BDM=90°,
∴∠CBD+∠CMD=180°,
∵∠AMD+∠CMD=180°,
∴∠AMD=∠CBD,
∴∠CAJ=∠CBD,
∵CA=CB,
∴△CAJ≌△CBD(SAS),
∴CJ=CD,∠ACJ=∠BCD,
∴∠JCD=∠ACB=90°,
∵JH=HD,
∴CH⊥DJ,CH=JH=HD,
即CH=DH,CH⊥DH.
【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
7.(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3)
【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的
解析:(1)当M、N运动6秒时,点N追上点M;(2)①,△AMN是等边三角形;②当或时,△AMN是直角三角形;(3)
【详解】(1)首先设点M、N运动x秒后,M、N两点重合,表示出M,N的运动路程,N的运动路程比M的运动路程多6cm,列出方程求解即可;
(2)①根据题意设点M、N运动t秒后,可得到等边三角形△AMN,然后表示出AM,AN的长,由于∠A等于60°,所以只要AM=AN三角形ANM就是等边三角形;
②分别就∠AMN=90°和∠ANM=90°列方程求解可得;
(3)首先假设△AMN是等腰三角形,可证出△ACM≌△ABN,可得CM=BN,设出运动时间,表示出CM,NB,NM的长,列出方程,可解出未知数的值.
【解答】解:(1)设点M、N运动x秒后,M、N两点重合,
x×1+6=2x,
解得:x=6,
即当M、N运动6秒时,点N追上点M;
(2)①设点M、N运动t秒后,可得到等边三角形△AMN,如图1,
AM=t,AN=6﹣2t,
∵AB=AC=BC=6cm,
∴∠A=60°,当AM=AN时,△AMN是等边三角形,
∴t=6﹣2t,
解得t=2,
∴点M、N运动2秒后,可得到等边三角形△AMN.
②当点N在AB上运动时,如图2,
若∠AMN=90°,
∵BN=2t,AM=t,
∴AN=6﹣2t,
∵∠A=60°,
∴2AM=AN,即2t=6﹣2t,
解得;
如图3,若∠ANM=90°,
由2AN=AM得2(6﹣2t)=t,
解得.
综上所述,当t为或时,△AMN是直角三角形;
(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,
由(1)知6秒时M、N两点重合,恰好在C处,
如图4,假设△AMN是等腰三角形,
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵AB=BC=AC,
∴△ACB是等边三角形,
∴∠C=∠B,
在△ACM和△ABN中,
∵∠AMC=∠ANB,∠C=∠B,AC=AB,
∴△ACM≌△ABN(AAS),
∴CM=BN,
∴t﹣6=18﹣2t,
解得t=8,符合题意.
所以假设成立,当M、N运动8秒时,能得到以MN为底的等腰三角形.
【点睛】本题是三角形综合题,主要考查了等边三角形的判定与性质,含30°角的直角三角形的性质,全等三角形的判定与性质,将动点问题转化为线段的长是解题的关键.
8.(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(
解析:(1)±2
(2)a=0,b=-3;
(3)
【分析】(1)将x=±2代入即可;
(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;
(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可.
(1)
解:当x=±2时,x2-4=0,
故答案为:±2;
(2)
解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),
∴x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,
∴1-a=1,b=-3,
∴a=0,b=-3;
(3)
解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,
∴多项式有因式(x-2),
设另一个因式为(x2+ax+b),
∴x3+4x2-3x-18=(x-2)(x2+ax+b),
∴x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,
∴a-2=4,2b=18,
∴a=6,b=9,
∴x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2.
【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键.
9.(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明
解析:(1);(2);(3).
【分析】(1)根据坐标系写出的坐标,进而根据,因式分解可得,进而可得,在x轴的正半轴上取点C,使,连接BC,证明是等边三角形,进而即可求得;
(2)连接BM,,进而证明为等边三角形,根据含30度角的直角三角形的性质即可求得
(3)过点F作轴交CB的延长线于点N,证明,,设,则等边三角形ABC的边长是4a,,进而计算可得,,即可求得的值.
【详解】(1)∵点在x轴负半轴上,
∴,,
∵,,
∴,
∵,
∴,
∴,
如答图1,在x轴的正半轴上取点C,使,连接BC,
∵,
∴,
又∵,
∴,
∴,
∴是等边三角形,
∴;
(2)如答图2,连接BM,
∴是等边三角形,
∵,,
∵∠,
∴,
∴,
∵D为AB的中点,
∴,
∵,
∴,
∴,在和中,
∴,
∴,即,
∴,
∴为等边三角形,
∴,∴;
(3)如答图3,过点F作轴交CB的延长线于点N,
则,
∵,
∴,
在和中,
∴,
∴,,
∵,
∴,
又∵E是OC的中点,设,
∴等边三角形ABC的边长是4a,,
∵,
∴,
在和中,
∴,
∴,
又∵,
∴,
,
∴.
【点睛】本题考查了坐标与图形,三角形全等的性质与判定,等边三角形的性质与判定,因式分解的应用,掌握三角形全等的性质与判定并正确的添加辅助线是解题的关键.
展开阅读全文