1、人教版中学七年级数学下册期末复习(及解析)一、选择题1如图,直线,被直线所截,则下列符合题意的结论是( )ABCD2如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )ABCD3下列各点在第二象限的是( )ABCD4下列句子中,属于命题的是( )三角形的内角和等于180度;对顶角相等;过一点作已知直线的垂线;两点确定一条直线ABCD5如图,直线,被直线,所截,若,则的度数是( )ABCD6下列说法正确的是( )A一个数的立方根有两个,它们互为相反数B负数没有立方根C任何一个数都有平方根和立方根D任何数的立方根都只有一个7如图,直线ABCD,BE平分ABD,若DBE20,DEB80,
2、求CDE的度数是()A50B60C70D808在平面直角坐标系中,对于点P(x,y),我们把点P(-y+1,x+1)叫做点P伴随点已知点A1的伴随点为A2,点A2的伴随点为A3,点A4的伴随点为A4,这样依次得到点A1,A2,A3,An,若点A1的坐标为(2,4),点A2021的坐标为( )A(-3,3)B(-2,2)C(3,-1)D(2,4)九、填空题9若+=0,则xy=_十、填空题10点关于轴的对称点的坐标为,则的值是_十一、填空题11如图,在中,的角平分线与的外角角平分线交于点E,则_度十二、填空题12如图,点M为CD上一点,MF平分CME若157,则EMD的大小为_度十三、填空题13如
3、图1是的一张纸条,按图示方式把这一纸条先沿折叠并压平,再沿折叠并压平,若图3中,则图2中的度数为_十四、填空题14规定运算:,其中为实数,则_十五、填空题15下列四个命题:直角坐标系中的点与有序实数对一一对应;若大于0,不小于0,则点在第三象限;过一点有且只有一条直线与已知直线平行;若,则的算术平方根是其中,是真命题的有_(写出所有真命题的序号)十六、填空题16如图所示的平面直角坐标系中,有一系列规律点,它们分别是以O为顶点,边长为正整数的正方形的顶点,A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,2),A6(0,2),A7(0,3),A8(3,3)依此规律A100
4、坐标为_十七、解答题17计算下列各题:(1); (2)-;(3)-+.十八、解答题18求下列各式中的值:(1);(2)十九、解答题19已知:,垂足分别为B,D,求证:,请你将证明过程补充完整证明:,垂足分别为B,D(已知)(垂直定义)_()_()又(已知)2(),_()()二十、解答题20在如图的方格中,每个小方格都是边长为1个单位长度的正方形,三角形ABC的三个顶点都在格点(小方格的顶点)上,(1)请建立适当的平面直角坐标系,使点A,C的坐标分别为(2,1),(1,1),并写出点B的坐标;(2)在(1)的条件下,将三角形ABC先向右平移4个单位长度,再向上平移2个单位长度后可得到三角形ABC
5、,请在图中画出平移后的三角形ABC,并分别写出点A,B,C的坐标二十一、解答题21阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分请解答:(1)若的整数部分为,小数部分为,求的值(2)已知:,其中是整数,且,求的值二十二、解答题22已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实
6、数和二十三、解答题23如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数二十四、解答题24如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且(1)求的度数(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律(3)当点P运动到使时,求的度数二十五、解答题25操作示例
7、:如图1,在ABC中,AD为BC边上的中线,ABD的面积记为S1,ADC的面积记为S2则S1=S2解决问题:在图2中,点D、E分别是边AB、BC的中点,若BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在ABC中,点D在边BC上,且BD=2CD,ABD的面积记为S1,ADC的面积记为S2则S1与S2之间的数量关系为 (2)如图4,在ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若BOC的面积为3,则四边形ADOE的面积为 .【参考答案】一、选择题1A解析:A【分析】利用对顶角、同位角、同旁内角定义解答即可【详解】解:A、1与3
8、是对顶角,故原题说法正确,符合题意;B、由条件不能得出14,故原题说法错误,不符合题意;C、2与4是同位角,只有ab时,24,故原题说法错误,不符合题意;D、3与4是同旁内角,只有ab时,34180故原题说法错误,不符合题意;故选:A【点睛】此题主要考查了对顶角、同位角、同旁内角,关键是掌握各种角的定义2C【分析】根据平移的特点即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义解析:C【分析】根据平移的特点即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义3C【分析】根据各象限内点的
9、坐标特征对各选项分析判断即可得解【详解】解:A在第一象限,故本选项不合题意;B在第四象限,故本选项不合题意;C在第二象限,故本选项符合题意D在第三象限,故本选项不合题意;故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(,+);第三象限(,);第四象限(+,)4B【分析】根据命题的定义即表示对一件事情进行判断的语句叫命题,分别对每一项是否是命题进行判断即可【详解】解: 三角形的内角和等于180,是三角形内角和定理,是命题;对顶角相等,是对顶角的性质,是命题;过一点作已知直线的垂线,是作图,不是命
10、题;两点确定一条直线,是直线的性质,是命题,综上所述,属于命题是故选:B【点睛】此题考查了命题的定义,解题的关键是能根据命题的定义对每一项进行判断5C【分析】首先证明ab,推出45,求出5即可【详解】解:12,ab,45,5180355,455,故选:C【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型6D【分析】根据负数没有平方根,一个正数的平方根有两个且互为相反数,一个数的立方根只有一个,结合选项即可作出判断【详解】A、一个数的立方根只有1个,故本选项错误;B、负数有立方根,故本选项错误; C、负数只有立方根,没有平方根,故本选项错误;D、任何数的立方根都只
11、有一个,故本选项正确故选:D【点睛】本题考查了平方根、算术平方根、立方根的概念,解决本题的关键是熟记平方根、算术平方根、立方根的概念7B【分析】延长,交于点,根据角平分线的定义以及已知条件可得,由三角形的外角性质可求,最后由平行线的性质即可求解【详解】延长,交于点, BE平分ABD,,DEB80,,故选B【点睛】本题考查了角平分线的定义,平行线的性质,三角形的外角性质,掌握以上知识是解题的关键8D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),解析:D【分析】根据
12、“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可【详解】解:A1的坐标为(2,4),A2(3,3),A3(2,2),A4(3,1),A5(2,4),依此类推,每4个点为一个循环组依次循环,202145051,点A2021的坐标与A1的坐标相同,为(2,4)故选:D【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键九、填空题916【分析】根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解【详解】+=0,x8=0,y2=0,x=8
13、,y=2,xy=.故答案为16.【点睛】解析:16【分析】根据算术平方根的性质列式求出x、y的值,然后代入代数式进行计算即可求解【详解】+=0,x8=0,y2=0,x=8,y=2,xy=.故答案为16.【点睛】本题考查非负数的性质:算术平方根,解题的关键是掌握算术平方根具有双重非负性:(1)被开方数a是非负数,即a0;(2)算术平方根本身是非负数,即0十、填空题104【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐解析:4【分析】根据横坐标不变,纵坐标相反,确定a,b的值,计
14、算即可【详解】点关于轴的对称点的坐标为,a=5,b= -1,a+b= 5-1=4,故答案为:4【点睛】本题考查了坐标系中轴对称问题,熟练掌握轴对称的坐标变化特点是解题的关键十一、填空题1135【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用A与EBC表示出ECD,再利用E与EBC表示出ECD,然后整理即可得到A与E的关系,进而可求出E【详解】解解析:35【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,用A与EBC表示出ECD,再利用E与EBC表示出ECD,然后整理即可得到A与E的关系,进而可求出E【详解】解:BE和CE分别是ABC和ACD的角平分线,EBC=ABC,ECD
15、=ACD,又ACD是ABC的一外角,ACD=A+ABC,ECD=(A+ABC)=A+ECD,ECD是BEC的一外角,ECD=EBC+E,E=ECD-EBC=A+EBC-EBC=A=70=35,故答案为:35【点睛】本题考查了三角形的外角性质与内角和定理,角平分线的定义,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键十二、填空题12【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据EMD=180-CME求出结果.【详解】ABCD,CMF=解析:【分析】根据ABCD,求得CMF=157,利用MF平分CME,求得CME=2CMF114,根据E
16、MD=180-CME求出结果.【详解】ABCD,CMF=157,MF平分CME,CME=2CMF114,EMD=180-CME66,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.十三、填空题13113【分析】如图,设BFEx,根据折叠的性质得BFEBFEx,AEFAEF,则BFCx21,再由第2次折叠得到CFBBFCx21,于是利用平角定解析:113【分析】如图,设BFEx,根据折叠的性质得BFEBFEx,AEFAEF,则BFCx21,再由第2次折叠得到CFBBFCx21,于是利用平角定义可计算出x67,接着根据平行线的性质得AEF1
17、80BFE113,所以AEF113【详解】解:如图,设BFEx,纸条沿EF折叠,BFEBFEx,AEFAEF,BFCBFECFEx21,纸条沿BF折叠,CFBBFCx21,而BFE+BFE+CFE180,x+x+x21180,解得x67,ADBC,AEF180BFE18067113,AEF113故答案为113【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等解决本题的关键是画出折叠前后得图形十四、填空题144【分析】根据题意将原式展开,然后化简绝对值,求解即可【详解】=4故答案为4【点睛】本题考查了定义新运算,绝对值的化简
18、,和实数的计算,熟练掌握绝对值的化简规律是本题的关键解析:4【分析】根据题意将原式展开,然后化简绝对值,求解即可【详解】=4故答案为4【点睛】本题考查了定义新运算,绝对值的化简,和实数的计算,熟练掌握绝对值的化简规律是本题的关键十五、填空题15【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;若大于0,不小于0,则0,0,点在第三象限解析:【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题;若大于0,不小于0,则0,0,点在第三象
19、限或x轴的负半轴上;故此命题是假命题;过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;若,则x=1,y=4,则的算术平方根是,正确,故此命题是真命题故答案为:【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键十六、填空题16(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案【详解】解:A1(0,1)、A2(1,1)、A3(1,0)、A解析:(34,0)【分析】本题是一道关于数字猜想的问题,根据已知条件得出坐标之间每三个增加一次,找出第100个所在位置即可得出答案【详解】解:A1(0,1)、A2(1
20、,1)、A3(1,0)、A4(2,0)、A5(2,2)、A6(0,2)、A7(0,3)、A8(3,3),数据每隔三个增加一次,1003得33余1,则点A在x轴上,故A100坐标为(34,0),故答案为:(34,0)【点睛】本题考查了规律型-点的坐标:通过特殊到一般解决此类问题,利用前面正方形的边长与字母A的脚标数之间的联系寻找规律十七、解答题17(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要解析:(1)5;(2)-2;(3)2【解析】【分析】根据实数的性质进行化简,再求
21、值.【详解】解:(1)=5;(2)- =-4=-2;(3)-+=-6+5+3=2.【点睛】此题主要考查实数的计算,解题的关键是熟知实数的性质.十八、解答题18(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,解析:(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,开方得,;(2)移项得,合并同类项得,开立方得,【点睛】此题考查了立
22、方根,以及平方根,熟练掌握各自的性质是解题关键十九、解答题19答案见详解【分析】根据ABBC,ABDE可以得到BCDE,从而得到1=EBC=2,即可得到BEGF,即可得到答案【详解】证明:ABBC,ABDE,垂足分别为B,D(己解析:答案见详解【分析】根据ABBC,ABDE可以得到BCDE,从而得到1=EBC=2,即可得到BEGF,即可得到答案【详解】证明:ABBC,ABDE,垂足分别为B,D(己知),ABCADE90(垂直定义),BCDE(同位角相等,两直线平行),1EBC(两直线平行,内错角相等),又l2(已知),2EBC(等量代换),BEGF(同位角相等,两直线平行),BECFGE180
23、(两直线平行,同旁内角互补)【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解二十、解答题20(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(解析:(1)坐标系见解析,B(0,1);(2)画图见解析,A(2,1),B(4,3),C(5,1)【分析】(1)根据A,C两点的坐标确定平面直角坐标系即可,根据点B的位置写出点B的坐标即可(2)分别作出A,B,C即可解决问题【详解】解:(1)平面直角坐标系如图所示:B(0,1
24、)(2)ABC如图所示A(2,1),B(4,3),C(5,1)【点睛】本题考查作图-平移变换,平面直角坐标系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型二十一、解答题21(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解析:(1)6;(2)12【分析】(1)先求出的取值范围即可求出a和b的值,然后代入求值即可;(2)先求出的取值范围,即可求出10+的整数部分和小数部分,从而求出x和y,从而求出结论【详解】解:(1) 34, a=3,b=-3 =+-3
25、-=6(2) 12又10+=x+y,其中x是整数,且0y1,x=11, y=1xy=11(1)=12【点睛】此题考查的是求无理数的整数部分、小数部分和实数的运算,掌握求无理数的取值范围是解决此题的关键二十二、解答题22(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)
26、的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键二十三、解答题23(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB
27、,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DAB
28、MCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+ABF+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题
29、主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键二十四、解答题24(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解解析:(1);(2)不变化,理由见解析;(3)【分析】(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案【详解】(1)BC,BD分别评分和,又,
30、;(2),又BD平分,;与之间的数量关系保持不变;(3),又,由(1)可得,【点睛】本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解二十五、解答题25解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)作ABD的中线AE,则有BE=ED
31、=DC,从而得到ABE的面积=AED的面积=ADC的面积,由此即可得到结论;(2)连接AO则可得到BOD的面积=BOC的面积,AOC的面积=AOD的面积,EOC的面积=BOC的面积的一半, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论试题解析:解:解决问题连接AE点D、E分别是边AB、BC的中点,SADE=SBDE,SABE=SAECSBDE =2,SADE =2,SABE=SAEC=4,四边形ADEC的面积=2+4=6拓展延伸:解:(1)作ABD的中线AE,则有BE=ED=DC,ABE的面积=AED的面积=ADC的面积= S2,S1=2S2(2)连接AOCO=DO,BOD的面积=BOC的面积=3,AOC的面积=AOD的面积BO=2EO,EOC的面积=BOC的面积的一半=1.5, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,四边形ADOE的面积为=a+b=6+4.5=10.5