资源描述
人教版中学七年级数学下册期末试题(及解析)
一、选择题
1.下列图形中,与是同旁内角的是( )
A. B. C. D.
2.下列四幅名车标志设计中能用平移得到的是( )
A.奥迪 B.本田
C.奔驰 D.铃木
3.如果点P(12m,m)的横坐标与纵坐标互为相反数,则点P一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.下列语句中:①同角的补角相等;②雪是白的;③画;④他是小张吗?⑤两直线相交只有一个交点.其中是命题的个数有( )
A.1个 B.2个 C.3个 D.4个
5.把一张有一组对边平行的纸条,按如图所示的方式折叠,若∠EFB=35°,则下列结论错误的是( )
A.∠C'EF=35° B.∠AEC=120° C.∠BGE=70° D.∠BFD=110°
6.下列关于立方根的说法中,正确的是( )
A.的立方根是 B.立方根等于它本身的数有
C.的立方根为 D.一个数的立方根不是正数就是负数
7.如图,直线a∥b,∠1=74°,∠2=34°,则∠3的度数是( )
A.75° B.55° C.40° D.35°
8.如图,动点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2),…, 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( )
A.(2020,1) B.(2020,2) C.(2021,1) D.(2021,2)
九、填空题
9.______.
十、填空题
10.在平面直角坐标系中,若点和点关于轴对称,则____.
十一、填空题
11.在△ABC中,AD为高线,AE为角平分线,当∠B=40º,∠ACD=60º,∠EAD的度数为_________.
十二、填空题
12.如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠1=∠2,那么∠1的度数为__________.
十三、填空题
13.如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C’处,折痕为EF,若∠ABE=30°,则∠EFC’的度数为____________.
十四、填空题
14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________.
十五、填空题
15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________.
十六、填空题
16.如图,在平面直角坐标系中:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),现把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→……的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________.
十七、解答题
17.计算:(1)||+2;
(2)
十八、解答题
18.已知:,,,求下列各式的值:
(1)的值;
(2)的值.
十九、解答题
19.完成下面的证明:
已知:如图,,,.
求证:.
证明:(已知),
∵∠______(____________________).
∴,(已知),
∵__________.
即∠______
∴(______________________________).
二十、解答题
20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:A→B(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
(1)A→C( , ),B→D( , ),C→ (+1, );
(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.
二十一、解答题
21.已知的平方根是,的立方根是4,的算术平方根是m.
(1)求m的值;
(2)如果,其中x是整数,且,求的值.
二十二、解答题
22.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是 ;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?
二十三、解答题
23.已知,点在与之间.
(1)图1中,试说明:;
(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:.
(3)图3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系.
二十四、解答题
24.如图,,平分,设为,点E是射线上的一个动点.
(1)若时,且,求的度数;
(2)若点E运动到上方,且满足,,求的值;
(3)若,求的度数(用含n和的代数式表示).
二十五、解答题
25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
【参考答案】
一、选择题
1.A
解析:A
【分析】
根据同旁内角的定义去判断
【详解】
∵A选项中的两个角,符合同旁内角的定义,
∴选项A正确;
∵B选项中的两个角,不符合同旁内角的定义,
∴选项B错误;
∵C选项中的两个角,不符合同旁内角的定义,
∴选项C错误;
∵D选项中的两个角,不符合同旁内角的定义,
∴选项D错误;
故选A.
【点睛】
本题考查了同旁内角的定义,结合图形准确判断是解题的关键.
2.A
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、是经过平移得到的,故符合题意;
B、不是经过平移得
解析:A
【分析】
根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.
【详解】
解:A、是经过平移得到的,故符合题意;
B、不是经过平移得到的,故的符合题意;
C、不是经过平移得到的,故不符合题意;
D、不是经过平移得到的,故不符合题意;
故选A.
【点睛】
本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.
3.B
【分析】
互为相反数的两个数的和为0,求出m的值,再判断出所求点的横纵坐标的符号,进而判断点P所在的象限.
【详解】
解:∵点P(1-2m,m)的横坐标与纵坐标互为相反数
∴
解得m=1
∴1-2m=1-2×1=-1,m=1
∴点P坐标为(-1,1)
∴点P在第二象限
故选B.
【点睛】
本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).
4.C
【分析】
根据命题的定义分别对各语句进行判断.
【详解】
解:“同角的补角相等”是命题,“雪是白的”是命题;“画∠AOB=Rt∠”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题.
故选:C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 有些命题的正确性是用推理证实的,这样的真命题叫做定理.
5.B
【分析】
根据平行线的性质即可求解.
【详解】
A.∵AE∥BF,
∴∠C'EF=∠EFB=35°(两直线平行,内错角相等),
故A选项不符合题意;
B.∵纸条按如图所示的方式析叠,
∴∠FEG=∠C'EF=35°,
∴∠AEC=180°﹣∠FEG﹣∠C'EF=180°﹣35°﹣35°=110°,
故B选项符合题意;
C.∵∠BGE=∠FEG+∠EFB=35°+35°=70°,
故C选项不符合题意;
D.∵AE∥BF,
∴∠EGF=∠AEC=110°(两直线平行,内错角相等),
∵EC∥FD,
∴∠BFD=∠EGF=110°(两直线平行,内错角相等),
故D选项不符合题意;
故选:B.
【点睛】
本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.
6.B
【分析】
各项利用立方根定义判断即可.
【详解】
解:A、-9的立方根是,故该选项错误;
B、立方根等于它本身的数有-1,0,1,故该选项正确;
C、,-8的立方根为-2,故该选项错误;
D、0的立方根是0,故该选项错误.
故选:B.
【点睛】
此题考查了立方根,熟练掌握立方根的定义是解本题的关键.
7.C
【分析】
根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.
【详解】
解:∵直线a∥b,∠1=74°,
∴∠4=∠1=74°,
∵∠2+∠3=∠4,
∴∠3=∠4-∠2=74°-34°=40°.
故选:C.
【点睛】
本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.
8.C
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,
因为2021=505×4+1,
所以,前505次循环运动点P
解析:C
【分析】
分析点P的运动规律找到循环规律即可.
【详解】
解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,
因为2021=505×4+1,
所以,前505次循环运动点P共向右运动505×4=2020个单位,剩余一次运动向右走1个单位,且纵坐标为1.
故点P坐标为(2021,1),
故选:C.
【点睛】
本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题.
九、填空题
9.10
【分析】
先计算乘法,然后计算算术平方根,即可得到答案.
【详解】
解:;
故答案为:10.
【点睛】
本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.
解析:10
【分析】
先计算乘法,然后计算算术平方根,即可得到答案.
【详解】
解:;
故答案为:10.
【点睛】
本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法.
十、填空题
10.【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故
解析:
【分析】
关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题.
【详解】
解:∵点M(2a-7,2)和N(-3﹣b,a+b)关于y轴对称,
∴,
解得:,
则=.
故答案为:.
【点睛】
本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知识是解题关键.
十一、填空题
11.10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即
解析:10°或40°;
【分析】
首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.
【详解】
解:当高AD在△ABC的内部时.
∵∠B=40°,∠C=60°,
∴∠BAC=180°-40°-60°=80°,
∵AE平分∠BAC,
∴∠BAE=∠BAC=40°,
∵AD⊥BC,
∴∠BDA=90°,
∴∠BAD=90°-∠B=50°,
∴∠EAD=∠BAD-∠BAE=50°-40°=10°.
当高AD在△ABC的外部时.
同法可得∠EAD=10°+30°=40°
故答案为10°或40°.
【点睛】
此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE的度数
十二、填空题
12.【分析】
根据题意知:,得出,从而得出,从而求算∠1.
【详解】
解:如图:
∵
∴
又∵∠1=∠2,
∴,解得:
故答案为:
【点睛】
本题考查平行线的性质,掌握两直线平行,同位角相等是
解析:
【分析】
根据题意知:,得出,从而得出,从而求算∠1.
【详解】
解:如图:
∵
∴
又∵∠1=∠2,
∴,解得:
故答案为:
【点睛】
本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.
十三、填空题
13.120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而
解析:120
【分析】
由折叠的性质知:∠EBC′、∠BC′F都是直角,因此BE∥C′F,那么∠EFC′和∠BEF互补,欲求∠EFC′的度数,需先求出∠BEF的度数;根据折叠的性质知∠BEF=∠DEF,而∠AEB的度数可在Rt△ABE中求得,由此可求出∠BEF的度数,即可得解.
【详解】
解:Rt△ABE中,∠ABE=30°,
∴∠AEB=60°;
由折叠的性质知:∠BEF=∠DEF;
而∠BED=180°-∠AEB=120°,
∴∠BEF=60°;
由折叠的性质知:∠EBC′=∠D=∠BC′F=∠C=90°,
∴BE∥C′F,
∴∠EFC′=180°-∠BEF=120°.
故答案为:120.
【点睛】
本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
十四、填空题
14.,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟
解析:,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.
十五、填空题
15.或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3
解析:或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,
当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去),
综上,x的值为2或,
故答案为2或.
【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.
十六、填空题
16.【分析】
先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题.
【详解】
解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),
四边形ABCD的周长为2+4+2+4=
解析:
【分析】
先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题.
【详解】
解:A(1,1),B(﹣1,1),C(﹣1,﹣3),D(1,﹣3),
四边形ABCD的周长为2+4+2+4=12,
细线另一端所在位置的点在B点的下方3个单位的位置,即点的坐标
故答案为:.
【点睛】
本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型.
十七、解答题
17.(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算
解析:(1)(2)3
【分析】
(1)根据二次根式的运算法即可求解;
(2)根据实数的性质化简,故可求解.
【详解】
(1)||+2
=
=
(2)
=
=3.
【点睛】
此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则.
十八、解答题
18.(1)±5;(2)13
【分析】
(1)将已知两式相减,再利用完全平方公式得到,可得结果;
(2)根据完全平方公式可得=,代入计算即可
【详解】
解:(1)∵①,②,
①+②得:,即,
∴;
(2)
解析:(1)±5;(2)13
【分析】
(1)将已知两式相减,再利用完全平方公式得到,可得结果;
(2)根据完全平方公式可得=,代入计算即可
【详解】
解:(1)∵①,②,
①+②得:,即,
∴;
(2)∵,
∴===13.
【点睛】
本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键.
十九、解答题
19.BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【分析】
根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论.
【详解】
证明:∵(已知),
∴∠BAC(
解析:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【分析】
根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论.
【详解】
证明:∵(已知),
∴∠BAC(垂直的定义).
∵,(已知),
∴180°
即∠BAD
∴(同旁内角互补,两直线平行)
故答案为:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了垂直定义和平行线的判定,证明∠BAD是解题关键.
二十、解答题
20.(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A→C( 3
解析:(1)3,4,3,﹣2,D,﹣2;(2)见解析
【分析】
(1)根据向上向右走为正,向下向左走为负,可得答案;
(2)根据向上向右走为正,向下向左走为负,可得答案.
【详解】
解:(1)A→C( 3,4),B→D(3﹣2),C→D(+1,﹣2);
故答案为3,4;3,﹣2;D,﹣2;
(2)这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置,如图
【点睛】
本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.
二十一、解答题
21.(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y
解析:(1);(2).
【分析】
(1)根据9的平方根为±3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;
(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.
【详解】
(1)依题意得2a-1=9,11a+b-1=64,
解得a=5,b=10,
∴b-a=5,其算术平方根为,
∴m=
(2)x+y=10+
∵2<<3,
∴12<10+<13,
∴x=12,y=10+-12=-2
∴x-y=12-(-2)=
【点睛】
此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.
二十二、解答题
22.(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小
解析:(1);(2)无法裁出这样的长方形.
【分析】
(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;
(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可.
【详解】
解:(1)由题意得,大正方形的面积为200+200=400cm2,
∴边长为: ;
根据题意设长方形长为 cm,宽为 cm,
由题:
则
长为
无法裁出这样的长方形.
【点睛】
本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.
二十三、解答题
23.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,
解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED=360°-2∠BFD.
【分析】
(1)图1中,过点E作EG∥AB,则∠BEG=∠ABE,根据AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,进而可得∠BED=∠ABE+∠CDE;
(2)图2中,根据∠ABE的平分线与∠CDE的平分线相交于点F,结合(1)的结论即可说明:∠BED=2∠BFD;
(3)图3中,根据∠ABE的平分线与∠CDE的平分线相交于点F,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,再结合(1)的结论即可说明∠BED与∠BFD之间的数量关系.
【详解】
解:(1)如图1中,过点E作EG∥AB,
则∠BEG=∠ABE,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG=∠CDE,
所以∠BEG+∠DEG=∠ABE+∠CDE,
即∠BED=∠ABE+∠CDE;
(2)图2中,因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BED=∠ABE+∠CDE,
∠BFD=∠ABF+∠CDF,
所以∠BED=2∠BFD.
(3)∠BED=360°-2∠BFD.
图3中,过点E作EG∥AB,
则∠BEG+∠ABE=180°,
因为AB∥CD,EG∥AB,
所以CD∥EG,
所以∠DEG+∠CDE=180°,
所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),
即∠BED=360°-(∠ABE+∠CDE),
因为BF平分∠ABE,
所以∠ABE=2∠ABF,
因为DF平分∠CDE,
所以∠CDE=2∠CDF,
∠BED=360°-2(∠ABF+∠CDF),
由(1)得:因为AB∥CD,
所以∠BFD=∠ABF+∠CDF,
所以∠BED=360°-2∠BFD.
【点睛】
本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.
二十四、解答题
24.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;
(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.
【详解】
解:(1),,
,
平分,
,
,
又,
;
(2)根据题意画图,如图1所示,
,,
,
,
,
,
又平分,
,
;
(3)①如图2所示,
,
,
平分,
,
,
又,
,
,
解得;
②如图3所示,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.
二十五、解答题
25.(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
展开阅读全文