1、人教版中学七年级数学下册期末试题(及解析)一、选择题1下列图形中,与是同旁内角的是()ABCD2下列四幅名车标志设计中能用平移得到的是( )A奥迪B本田C奔驰D铃木3如果点P(12m,m)的横坐标与纵坐标互为相反数,则点P一定在()A第一象限B第二象限C第三象限D第四象限4下列语句中:同角的补角相等;雪是白的;画;他是小张吗?两直线相交只有一个交点其中是命题的个数有( )A1个B2个C3个D4个5把一张有一组对边平行的纸条,按如图所示的方式折叠,若EFB35,则下列结论错误的是()ACEF35BAEC120CBGE70DBFD1106下列关于立方根的说法中,正确的是( )A的立方根是B立方根等
2、于它本身的数有C的立方根为D一个数的立方根不是正数就是负数7如图,直线ab,1=74,2=34,则3的度数是( )A75B55C40D358如图,动点 P在平面直角坐标系中按图中箭头所示方向运动,第 1 次从原点运 动到点(1,1),第 2 次接着运动到点(2,0),第 3 次接着运动到点(3,2), 按这样的运动规律,经过第 2021 次运动后,动点 P的坐标是( )A(2020,1)B(2020,2)C(2021,1)D(2021,2)九、填空题9_十、填空题10在平面直角坐标系中,若点和点关于轴对称,则_十一、填空题11在ABC中,AD为高线,AE为角平分线,当B=40,ACD=60,E
3、AD的度数为_.十二、填空题12如图,现将一块含有60角的三角板的顶点放在直尺的一边上,若12,那么1的度数为_十三、填空题13如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C处,折痕为EF,若ABE=30,则EFC的度数为_十四、填空题14如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为_十五、填空题15若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为_.十六、填空题16如图,在平面直角坐标系中:A(1,1),B(1,1),C(1,3),D(1,3),现把一条长为2021个单位长度且没有弹性的细
4、线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是_十七、解答题17计算:(1)|+2;(2)十八、解答题18已知:,求下列各式的值:(1)的值;(2)的值十九、解答题19完成下面的证明:已知:如图,求证:证明:(已知),_(_),(已知),_即_(_)二十、解答题20如图,一只甲虫在55的方格(每小格边长为1)上沿着网格线运动它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负如果从A到B记为:AB(1,4),从B到A记为:AB(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中
5、(1)AC( , ),BD( , ),C (1, );(2)若这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(1,1),(2,3),(1,2),请在图中标出P的位置二十一、解答题21已知的平方根是,的立方根是4,的算术平方根是m(1)求m的值;(2)如果,其中x是整数,且,求的值二十二、解答题22如图,用两个面积为的小正方形拼成一个大的正方形(1)则大正方形的边长是 ;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为,且面积为?二十三、解答题23已知,点在与之间(1)图1中,试说明:;(2)图2中,的平分线与的平分线相交于点,请利用(1)的结论说明:(3)图
6、3中,的平分线与的平分线相交于点,请直接写出与之间的数量关系二十四、解答题24如图,平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)二十五、解答题25问题情境:如图1,ABCD,PAB=130,PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P
7、与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、选择题1A解析:A【分析】根据同旁内角的定义去判断【详解】A选项中的两个角,符合同旁内角的定义,选项A正确;B选项中的两个角,不符合同旁内角的定义,选项B错误;C选项中的两个角,不符合同旁内角的定义,选项C错误;D选项中的两个角,不符合同旁内角的定义,选项D错误;故选A【点睛】本题考查了同旁内角的定义,结合图形准确判断是解题的关键2A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得解
8、析:A【分析】根据平移的概念:在平面内,把一个图形整体沿着某一方向移动,这种图形的平行移动叫做平移变换,简称平移,由此即可求解.【详解】解:A、是经过平移得到的,故符合题意;B、不是经过平移得到的,故的符合题意;C、不是经过平移得到的,故不符合题意;D、不是经过平移得到的,故不符合题意;故选A.【点睛】本题主要考查了图形的平移,解题的关键在于能够熟练掌握图形平移的概念.3B【分析】互为相反数的两个数的和为0,求出m的值,再判断出所求点的横纵坐标的符号,进而判断点P所在的象限【详解】解:点P(1-2m,m)的横坐标与纵坐标互为相反数解得m=11-2m=1-21=-1,m=1点P坐标为(-1,1)
9、点P在第二象限故选B【点睛】本题考查了点的坐标和相反数的定义,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-)4C【分析】根据命题的定义分别对各语句进行判断【详解】解:“同角的补角相等”是命题,“雪是白的”是命题;“画AOB=Rt”不是命题;“他是小张吗?”不是命题;“两直线相交只有一个交点”是命题故选:C【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式 有些命题的正确性是用推理证实的
10、,这样的真命题叫做定理5B【分析】根据平行线的性质即可求解【详解】AAEBF,CEFEFB35(两直线平行,内错角相等),故A选项不符合题意;B纸条按如图所示的方式析叠,FEGCEF35,AEC180FEGCEF1803535110,故B选项符合题意;CBGEFEG+EFB35+3570,故C选项不符合题意;DAEBF,EGFAEC110(两直线平行,内错角相等),ECFD,BFDEGF110(两直线平行,内错角相等),故D选项不符合题意;故选:B【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系6B【分析】各项利用立方根定义判断即可【详解】解:A、-9的立方根
11、是,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误故选:B【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键7C【分析】根据平行线的性质得出4=1=74,然后根据三角形外角的性质即可求得3的度数【详解】解:直线ab,1=74,4=1=74,2+3=4,3=4-2=74-34=40故选:C【点睛】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键8C【分析】分析点P的运动规律找到循环规律即可【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因
12、为202150541,所以,前505次循环运动点P解析:C【分析】分析点P的运动规律找到循环规律即可【详解】解:点P坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,因为202150541,所以,前505次循环运动点P共向右运动50542020个单位,剩余一次运动向右走1个单位,且纵坐标为1故点P坐标为(2021,1),故选:C【点睛】本题是平面直角坐标系下的坐标规律探究题,解答关键是利用数形结合解决问题九、填空题910【分析】先计算乘法,然后计算算术平方根,即可得到答案【详解】解:;故答案为:10【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法解析:10【分
13、析】先计算乘法,然后计算算术平方根,即可得到答案【详解】解:;故答案为:10【点睛】本题考查了算术平方根,解题的关键是掌握算术平方根的计算方法十、填空题10【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故解析:【分析】关于y轴对称的点的特征是纵坐标不变,横坐标变为相反数,据此解得a,b的值即可解题【详解】解:点M(2a-7,2)和N(-3b,a+b)关于y轴对称,解得:,则故答案为:【点睛】本题考查关于y轴对称的点的特征、涉及解二元一次方程组,是基础考点,难度较易,掌握相关知
14、识是解题关键十一、填空题1110或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即解析:10或40;【分析】首先根据三角形的内角和定理求得BAC,再根据角平分线的定义求得BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得AED,最后根据直角三角形的两个锐角互余即可求解【详解】解:当高AD在ABC的内部时B=40,C=60,BAC=180-40-60=80,AE平分BAC,BAE=BAC=40,ADBC,BDA=90,BAD=90-B=50,EAD=BAD-
15、BAE=50-40=10当高AD在ABC的外部时同法可得EAD=10+30=40故答案为10或40【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出BAE的度数十二、填空题12【分析】根据题意知:,得出,从而得出,从而求算1【详解】解:如图:又12, ,解得: 故答案为: 【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解析:【分析】根据题意知:,得出,从而得出,从而求算1【详解】解:如图:又12, ,解得: 故答案为: 【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键十三、填空题13120【分析】由折叠的性质知:EBC、BCF都是
16、直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而解析:120【分析】由折叠的性质知:EBC、BCF都是直角,因此BECF,那么EFC和BEF互补,欲求EFC的度数,需先求出BEF的度数;根据折叠的性质知BEF=DEF,而AEB的度数可在RtABE中求得,由此可求出BEF的度数,即可得解【详解】解:RtABE中,ABE=30,AEB=60;由折叠的性质知:BEF=DEF;而BED=180-AEB=120,BEF=60;由折叠的性质知:EBC=D=BCF=C=90,BECF,EFC=180-BEF=120故答案为:120【点睛】
17、本题考查图形的翻折变换以及平行线的性质的运用,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变十四、填空题14,【分析】根据算术平方根的定义以及数轴的定义解答即可【详解】解:正方形的面积为5,圆的半径为,点A表示的数为,点表示的数为故答案为:,【点睛】本题考查了实数与数轴,熟解析:,【分析】根据算术平方根的定义以及数轴的定义解答即可【详解】解:正方形的面积为5,圆的半径为,点A表示的数为,点表示的数为故答案为:,【点睛】本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键十五、填空题15或【详解】【分析】分x0,0x3,x3三种情况分别讨论
18、即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=,当0x3时,2x0,x-3解析:或【详解】【分析】分x0,0x3,x3三种情况分别讨论即可得.【详解】当x0时,2x0,x-30,由题意则有-2x-(x-3)=5,解得:x=,当0x3时,2x0,x-30,x-30,由题意则有2x+x-3=5,解得:x=3(不合题意,舍去),综上,x的值为2或,故答案为2或.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.十六、填空题16【分析】先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题【详解】解:A(1,1),B(1
19、,1),C(1,3),D(1,3),四边形ABCD的周长为2+4+2+4=解析:【分析】先求出四边形ABCD的周长为12,再计算,得到余数为5,由此解题【详解】解:A(1,1),B(1,1),C(1,3),D(1,3),四边形ABCD的周长为2+4+2+4=12,细线另一端所在位置的点在B点的下方3个单位的位置,即点的坐标故答案为:【点睛】本题考查规律型:点的坐标,解题关键是理解题意,求出四边形的周长,属于中考常考题型十七、解答题17(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运
20、算解析:(1)(2)3【分析】(1)根据二次根式的运算法即可求解;(2)根据实数的性质化简,故可求解【详解】(1)|+2=(2)=3【点睛】此题主要考查实数与二次根式的运算,解题的关键是熟知其运算法则十八、解答题18(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2)解析:(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2),=13【点睛】本题主要考查了完全平方公式的变
21、式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键十九、解答题19BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【分析】根据垂直的定义和已知证明BAD,即,由同旁内角互补,两直线平行即可得出结论【详解】证明:(已知),BAC(解析:BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【分析】根据垂直的定义和已知证明BAD,即,由同旁内角互补,两直线平行即可得出结论【详解】证明:(已知),BAC(垂直的定义),(已知),180即BAD(同旁内角互补,两直线平行)故答案为:BAC,垂直的定义,180,BAD,同旁内角互补,两直线平行【点睛】本题主要考查了垂直定义和平行
22、线的判定,证明BAD是解题关键二十、解答题20(1)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3解析:(1)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3,4),BD(32),CD(1,2);故答案为3,4;3,2;D,2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(1,1),(2,3),(1,2),请在图中标出P的位置,如
23、图【点睛】本题主要考查了用有序实数对表示路线读懂题目信息,正确理解行走路线的记录方法是解题的关键二十一、解答题21(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y解析:(1);(2)【分析】(1)根据9的平方根为3得到2a-1=9,同理得11a+b-1=64,即可求出a,b的值,再进行求解即可;(2)先估算,得到其整数部分,则y为小数部分,分别求出x,y即可计算.【详解】(1)依题意得2a-1=9,11a+b-1=64,解得a=5,b=10,b-a=5,其
24、算术平方根为,m=(2)x+y=10+23,1210+13,x=12,y=10+-12=-2x-y=12-(-2)=【点睛】此题主要考查平方根的应用,解题的关键是熟知平方根的性质及实数的估算.二十二、解答题22(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小解析:(1);(2)无法裁出这样的长方形【分析】(1)先计算两个小正方形的面积之和,在根据算术平方根的定义,即可求解;(2)设长方形长为cm,宽为cm,根据题意列出方程,解方程比较4x与20的大小即可
25、【详解】解:(1)由题意得,大正方形的面积为200+200=400cm2,边长为: ;根据题意设长方形长为 cm,宽为 cm,由题:则长为无法裁出这样的长方形.【点睛】本题考查了算术平方根,根据题意列出算式(方程)是解决此题的关键.二十三、解答题23(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDEG,解析:(1)说明过程请看解答;(2)说明过程请看解答;(3)BED=360-2BFD【分析】(1)图1中,过点E作EGAB,则BEG=ABE,根据ABCD,EGAB,所以CDE
26、G,所以DEG=CDE,进而可得BED=ABE+CDE;(2)图2中,根据ABE的平分线与CDE的平分线相交于点F,结合(1)的结论即可说明:BED=2BFD;(3)图3中,根据ABE的平分线与CDE的平分线相交于点F,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,再结合(1)的结论即可说明BED与BFD之间的数量关系【详解】解:(1)如图1中,过点E作EGAB,则BEG=ABE,因为ABCD,EGAB,所以CDEG,所以DEG=CDE,所以BEG+DEG=ABE+CDE,即BED=ABE+CDE;(2)图2中,因为BF平分ABE
27、,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,所以ABE+CDE=2ABF+2CDF=2(ABF+CDF),由(1)得:因为ABCD,所以BED=ABE+CDE,BFD=ABF+CDF,所以BED=2BFD(3)BED=360-2BFD图3中,过点E作EGAB,则BEG+ABE=180,因为ABCD,EGAB,所以CDEG,所以DEG+CDE=180,所以BEG+DEG=360-(ABE+CDE),即BED=360-(ABE+CDE),因为BF平分ABE,所以ABE=2ABF,因为DF平分CDE,所以CDE=2CDF,BED=360-2(ABF+CDF),由(1)得:因为A
28、BCD,所以BFD=ABF+CDF,所以BED=360-2BFD【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十四、解答题24(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质
29、,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平
30、行线的性质是解决本题的关键二十五、解答题25(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:(1),理由见解析;(2)当点P在B、O两点之间时,; 当点P在射线AM上时,.【分析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)分两种情况:点P在A、M两点之间,点P在B、O两点之间,分别画出图形,根据平行线的性质得出=DPE,=CPE,即可得出结论【详解】解:(1)CPD,理由如下:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.(2)当点P在A、M两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDCPEDPE;当点P在B、O两点之间时,CPD.理由:如图,过P作PEAD交CD于E.ADBC,ADPEBC,DPE,CPE,CPDDPECPE.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导解题时注意:问题(2)也可以运用三角形外角性质来解决
©2010-2024 宁波自信网络信息技术有限公司 版权所有
客服电话:4008-655-100 投诉/维权电话:4009-655-100