资源描述
2023年人教版中学七7年级下册数学期末复习及答案
一、选择题
1.的平方根是()
A. B. C. D.
2.为进一步扩大和提升浑源县旅游知名度和美誉度,彰显浑源的自然魅力和文化内涵,浑源县面向全社会公开征集浑源县旅游城市形象宣传语、宣传标识及主题歌曲,如图所示是其中一幅参赛标识,将此宣传标识进行平移,能得到的图形是( )
A. B. C. D.
3.在直角坐标系中内点在第三象限,那么点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )
A.②③ B.②④ C.③④ D.②③④
5.如图, ,若,,,则下列说法正确的是( )
A. B. C. D.
6.下列运算中:①;②;③;④,错误的个数有( )
A.1个 B.2个 C.3个 D.4个
7.在同一平面内,若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠A的度数为( )
A.20° B.55° C.20°或125° D.20°或55°
8.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长度,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列,如:P1(0,0),P2(0,1),P3(1,1),P4(1,﹣1),P5(﹣1,﹣1),P6(﹣1,2)…根据这个规律,点P2021的坐标为( )
A.(﹣505,﹣505) B.(﹣505,506)
C.(506,506) D.(505,﹣505)
九、填空题
9.的算术平方根是 _____.
十、填空题
10.已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.
十一、填空题
11.如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则__________.
十二、填空题
12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°.
十三、填空题
13.如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA'恰好落在折痕EF上,点B的对应点B'落在长方形外,B'F与CD交于点H,已知∠B'HC=134°,则∠AGE=_____°.
十四、填空题
14.观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为____.
十五、填空题
15.如图,直线经过原点,点在轴上,于.若A(4,0),B(m,3),C(n,-5),则______.
十六、填空题
16.在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为____
十七、解答题
17.计算:
(1)
(2)
十八、解答题
18.求下列各式中x的值:
(1)9x2-25=0;
(2)(x+3)3+27=0.
十九、解答题
19.如图,,,求度数.完成说理过程并注明理由.
解:∵,
∴________( )
又∵,
∴,
∴__________( )
∴( )
∵,
∴______度.
二十、解答题
20.与在平面直角坐标系中的位置如图.
(1)分别写出下列各点的坐标: ; ; ;
(2)说明由经过怎样的平移得到?答:_______________.
(3)若点是内部一点,则平移后内的对应点的坐标为_________;
(4)求的面积.
二十一、解答题
21.阅读下面的文字,解答问题,例如:,即,
的整数部分是2,小数部分是;
(1)试解答:的整数部分是____________,小数部分是________
(2)已知小数部分是,小数部分是,且,请求出满足条件的的值.
二十二、解答题
22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
二十三、解答题
23.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.
(1)如图1,若∠BCG=40°,求∠ABC的度数;
(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;
(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.
二十四、解答题
24.将两块三角板按如图置,其中三角板边,,,.
(1)下列结论:正确的是_______.
①如果,则有;
②;
③如果,则平分.
(2)如果,判断与是否相等,请说明理由.
(3)将三角板绕点顺时针转动,直到边与重合即停止,转动的过程中当两块三角板恰有两边平行时,请直接写出所有可能的度数.
二十五、解答题
25.模型与应用.
(模型)
(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.
(应用)
(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .
如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 .
(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)
【参考答案】
一、选择题
1.B
解析:B
【分析】
直接根据平方根的定义进行解答即可.
【详解】
解:∵(±3)2=9,
∴9的平方根是±3.
故选:B.
【点睛】
本题考查的是平方根的定义,即如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.
2.B
【分析】
根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.
【详解】
解:A.选项是原图形旋转得到,不合题意;
B.选项是原图形平移得到,符合题意;
C.选项是原图形
解析:B
【分析】
根据平移的性质,图形平移前后的形状和大小没有变化,只是位置发生变化即可求解.
【详解】
解:A.选项是原图形旋转得到,不合题意;
B.选项是原图形平移得到,符合题意;
C.选项是原图形翻折得到,不合题意;
D.选项是原图形旋转得到,不合题意.
故选:B
【点睛】
本题考查了平移的性质,理解平移的定义和性质是解题关键.
3.D
【分析】
根据第三象限内点的坐标符号判断出a、b,再根据各象限内点的坐标特征解答.
【详解】
解:∵点M(a,b)在第三象限,
∴a<0,b<0,
∴-a>0,
那么点N(-a,b)所在的象限是:第四象限.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.
【详解】
对顶角相等,所以①正确,不符合题意;
过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;
相等的角不一定为对顶角,所以③不正确,符合题意;
两直线平行,同位角相等,所以④不正确,符合题意,
故选:D.
【点睛】
本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.
5.D
【分析】
根据平行线的性质进行求解即可得到答案.
【详解】
解:∵BE∥CD
∴∠ 2+∠C=180°,∠ 3+∠D=180°
∵∠ 2=50°,∠ 3=120°
∴∠C=130°,∠D=60°
又∵BE∥AF,∠ 1=40°
∴∠A=180°-∠ 1=140°,∠F=∠ 3=120°
故选D.
【点睛】
本题主要考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
6.D
【分析】
对每个选项依次计算判断即可.
【详解】
①,故该项错误;
②无意义,故该项错误;
③,故该项错误;
④,故该项错误.
共4个错误的,
故选:D.
【点睛】
此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.
7.C
【分析】
根据∠A与∠B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A得度数.
【详解】
解:∵两个角的两边分别平行,
∴这两个角大小相等或互补,
①这两个角大小相等,如下图所示:
由题意得,∠A=∠B,∠A=3∠B-40°,
∴∠A=∠B=20°,
②这两个角互补,如下图所示:
由题意得,,,
∴,,
综上所述,∠A的度数为20°或125°,
故选:C.
【点睛】
本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.
8.A
【分析】
先分别求出点的坐标,再归纳类推出一般规律即可得.
【详解】
解:由题意得:点的坐标为,即,
点的坐标为,即,
点的坐标为,即,
归纳类推得:点的坐标为,其中为正整数,
,
点的坐标为,
解析:A
【分析】
先分别求出点的坐标,再归纳类推出一般规律即可得.
【详解】
解:由题意得:点的坐标为,即,
点的坐标为,即,
点的坐标为,即,
归纳类推得:点的坐标为,其中为正整数,
,
点的坐标为,
故选:A.
【点睛】
本题考查了点坐标的规律探索,正确归纳类推出一般规律是解题关键.
九、填空题
9.2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去
解析:2
【详解】
∵,的算术平方根是2,
∴的算术平方根是2.
【点睛】
这里需注意:的算术平方根和的算术平方根是完全不一样的;因此求一个式子的平方根、立方根和算术平方根时,通常需先将式子化简,然后再去求,避免出错.
十、填空题
10.(-3,-1)
【分析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为(-3,-1).
解析:(-3,-1)
【分析】
根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.
【详解】
解:∵点Q与点P(3,﹣1)关于y轴对称,
∴Q(-3,-1).
故答案为(-3,-1).
【点睛】
本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点.
十一、填空题
11.【分析】
根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.
【详解】
解:设BC延长与点D,
∵,
的角平分线与的外角的角平分线交于点,
∴
,
同
解析:
【分析】
根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可.
【详解】
解:设BC延长与点D,
∵,
的角平分线与的外角的角平分线交于点,
∴
,
同理可得,
,
∴,
∵,
∴,
故答案为:.
【点睛】
本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键.
十二、填空题
12.40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠D
解析:40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠DAE+∠CAB=180°-∠DAC=90°
∴∠1+∠2=90°
∴∠2=90°-∠1=40°
故答案为:40.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.11
【分析】
由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数.
【详解】
解:如图,
,
,
,
,
折叠,
,
,
,
,
故答案为:11.
解析:11
【分析】
由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数.
【详解】
解:如图,
,
,
,
,
折叠,
,
,
,
,
故答案为:11.
【点睛】
本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解.
十四、填空题
14.【分析】
由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.
【详解】
由图可知,
每个图形的最上面的小正方形中的数字是连续奇数,所以第n
解析:【分析】
由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n﹣1+2n,即可得出答案.
【详解】
由图可知,
每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形中最上面的小正方形中的数字是2n﹣1,
即2n﹣1=11,n=6.
∵2=21,4=22,8=23,…,左下角的小正方形中的数字是2n,∴b=26=64.
∵右下角中小正方形中的数字是2n﹣1+2n,∴a=11+b=11+64=75,∴a+b=75+64=139.
故答案为:139.
【点睛】
本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.
十五、填空题
15.【分析】
作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.
【详解】
解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,
∵B(m,3),
∴BE=3,
∵A
解析:
【分析】
作三角形的高线,根据坐标求出BE、OA、OF的长,利用面积法可以得出BC•AD=32.
【详解】
解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,
∵B(m,3),
∴BE=3,
∵A(4,0),
∴AO=4,
∵C(n,-5),
∴OF=5,
∵S△AOB=AO•BE=×4×3=6,
S△AOC=AO•OF=×4×5=10,
∴S△AOB+S△AOC=6+10=16,
∵S△ABC=S△AOB+S△AOC,
∴BC•AD=16,
∴BC•AD=32,
故答案为:32.
【点睛】
本题考查了坐标与图形性质,根据点的坐标表示出对应线段的长,面积法在几何问题中经常运用,要熟练掌握;本题根据面积法求出线段的积.
十六、填空题
16.【分析】
利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后
解析:
【分析】
利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,−1),点P5的坐标为(2,0),…,从而得到每4次变换一个循环,然后利用2021=4×505+1可判断点P2021的坐标与点P1的坐标相同.
【详解】
解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(−3,3),点P4的坐标为(−2,-1),点P5的坐标为(2,0),…,
而2021=4×505+1,
所以点P2021的坐标与点P1的坐标相同,为(2,0),
故答案为:.
【点睛】
本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键.
十七、解答题
17.(1);(2)-5.
【分析】
(1)直接利用算术平方根以及立方根的定义化简得出答案;
(2)直接利用算术平方根以及立方根的定义化简得出答案.
【详解】
(1)
=1+-2
=
(2)
=3-4+
解析:(1);(2)-5.
【分析】
(1)直接利用算术平方根以及立方根的定义化简得出答案;
(2)直接利用算术平方根以及立方根的定义化简得出答案.
【详解】
(1)
=1+-2
=
(2)
=3-4+1-5
=-5
【点睛】
此题主要考查了实数运算,正确化简各数是解题关键.
十八、解答题
18.(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的
解析:(1)x=;(2)x=-6
【分析】
(1)经过移项,系数化为1后,再开平方即可;
(2)移项后开立方,再移项运算即可.
【详解】
(1)
解:
(2)
解:
【点睛】
本题主要考查了实数的运算,熟悉掌握平方根和立方根的开方是解题的关键.
十九、解答题
19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等
解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.
【详解】
解:∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等).
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(内错角相等,两直线平行).
∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).
∵∠AGD=110°,
∴∠BAC=70度.
故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.
【点睛】
本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.
二十、解答题
20.(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对
解析:(1)(-3,1),(-2,-2),(-1,-1);(2)向左平移4个单位,向下平移2个单位;(3)(a-4,b-2);(4)2
【分析】
(1)根据平面直角坐标系写出各点的坐标即可;
(2)根据对应点A、A′的变化写出平移方法即可;
(3)根据平移规律逆向写出点P′的坐标;
(4)利用△ABC所在的长方形的面积减去四周三个小直角三角形的面积,列式计算即可得解.
【详解】
解:(1)A′(-3,1); B′(-2,-2);C′(-1,-1);
(2)向左平移4个单位,向下平移2个单位;
(3)若点P(a,b)是△ABC内部一点,
则平移后△A'B'C'内的对应点P'的坐标为:(a-4,b-2);
(4)△ABC的面积==2.
【点睛】
本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.
二十一、解答题
21.(1)4,;(2)
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵,即,
∴的整数部分是4,小数部分
解析:(1)4,;(2)
【分析】
(1)根据夹逼法可求的整数部分和小数部分;
(2)首先估算出m,n的值,进而得出m+n的值,可求满足条件的x的值.
【详解】
(1)∵,即,
∴的整数部分是4,小数部分是,
故答案是:4;;
(2)∵,
∴,
∴,
∴的整数部分是4,小数部分是,
∵,
∴,
∴的整数部分是13,小数部分是,
∵
所以
解得:.
【点睛】
本题考查了估算无理数的大小,无理数的整数部分及小数部分的确定方法:设无理数为m,m的整数部分a为不大于m的最大整数,小数部分b为数m减去其整数部分,即b=m-a;理解概念是解题的关键.
二十二、解答题
22.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
二十三、解答题
23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.
【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后
解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.
【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;
(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;
(3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.
【详解】
解:(1)过点B作BMHD,则HDGEBM,如图1,
∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,
∵∠DAB=120°,∠BCG=40°,
∴∠ABM=60°,∠CBM=40°,
∴∠ABC=∠ABM+∠CBM=100°;
(2)过B作BPHDGE,过F作FQHDGE,如图2,
∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,
∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,
∵∠DAB=120°,
∴∠HAB=180°﹣∠DAB=60°,
∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,
∴∠HAF=30°,∠FCG=40°,
∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,
∴∠ABC>∠AFC;
(3)过P作PKHDGE,如图3,
∴∠APK=∠HAP,∠CPK=∠PCG,
∴∠APC=∠HAP+∠PCG,
∵PN平分∠APC,
∴∠NPC=∠HAP+∠PCG,
∵∠PCE=180°﹣∠PCG,CN平分∠PCE,
∴∠PCN=90°﹣∠PCG,
∵∠N+∠NPC+∠PCN=180°,
∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,
即:∠N=90°﹣∠HAP.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
二十四、解答题
24.(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°
【分析】
(1)根据平行线的判定和性质分别判定即可;
(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断
解析:(1)②③;(2)相等,理由见解析;(3)30°或45°或75°或120°或135°
【分析】
(1)根据平行线的判定和性质分别判定即可;
(2)利用角的和差,结合∠CAB=∠DAE=90°进行判断;
(3)依据这两块三角尺各有一条边互相平行,分五种情况讨论,即可得到∠EAB角度所有可能的值.
【详解】
解:(1)①∵∠BFD=60°,∠B=45°,
∴∠BAD+∠D=∠BFD+∠B=105°,
∴∠BAD=105°-30°=75°,
∴∠BAD≠∠B,
∴BC和AD不平行,故①错误;
②∵∠BAC+∠DAE=180°,
∴∠BAE+∠CAD=∠BAE+∠CAE+∠DAE=180°,故②正确;
③若BC∥AD,
则∠BAD=∠B=45°,
∴∠BAE=45°,
即AB平分∠EAD,故③正确;
故答案为:②③;
(2)相等,理由是:
∵∠CAD=150°,
∴∠BAE=180°-150°=30°,
∴∠BAD=60°,
∵∠BAD+∠D=∠BFD+∠B,
∴∠BFD=60°+30°-45°=45°=∠C;
(3)若AC∥DE,
则∠CAE=∠E=60°,
∴∠EAB=90°-60°=30°;
若BC∥AD,
则∠B=∠BAD=45°,
∴∠EAB=45°;
若BC∥DE,
则∠E=∠AFB=60°,
∴∠EAB=180°-60°-45°=75°;
若AB∥DE,
则∠D=∠DAB=30°,
∴∠EAB=30°+90°=120°;
若AE∥BC,
则∠C=∠CAE=45°,
∴∠EAB=45°+90°=135°;
综上:∠EAB的度数可能为30°或45°或75°或120°或135°.
【点睛】
本题考查了平行线的判定和性质,角平分线的定义,解题的关键是理解题意,分情况画出图形,学会用分类讨论的思想思考问题.
二十五、解答题
25.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF
解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),
故答案是:900° , 180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C MnO=∠MnOR
∴∠A M1O+∠CMnO=∠M1OR+∠MnOR,
∴∠A M1O+∠CMnO=∠M1OMn=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CMnMn-1=2∠CMnO,
∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,
又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.
展开阅读全文