1、2023年人教版中学七7年级下册数学期末学业水平试卷(附答案)一、选择题1如图,属于同位角的是( )A与B与C与D与2下列现象中是平移的是( )A翻开书中的每一页纸张B飞碟的快速转动C将一张纸沿它的中线折叠D电梯的上下移动3在下列所给出坐标的点中,在第二象限的是()A(0,3)B(2,1)C(1,2)D(1,2)4命题:对顶角相等;过一点有且只有一条直线与已知直线平行;垂直于同一条直线的两条直线平行:同旁内角互补其中错误的有( )A1个B2个C3个D4个5如图,从,三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A0B1C2D36下列算式,正确的是( )AB
2、CD7如图,ABCD,直线EF分别交AB、CD于点E、F,FH平分EFD,若1110,则2的度数为()A45B40C55D358如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点(1,0)、(2,0)、(2,1)(1,1)、(1,2)、(2,2).根据这个规律,第2021个点的坐标为()A(45,4)B(45,9)C(45,21)D(45,0)九、填空题9若,则x+y+z=_十、填空题10若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),则a=_,b=_十一、填空题11如图,AD是ABC的角平分线,DEAB,垂足为E,若ABC的面积为1
3、5,DE3,AB6,则AC的长是 _ 十二、填空题12如图,直线,被直线所截,则_十三、填空题13如图,在中,若将沿折叠,使点与点重合,若的周长为的周长为,则_十四、填空题14已知为两个连续的整数,且,则_十五、填空题15平面直角坐标系中,已知点A(2,0),B(0,3),点P(m,n)为第三象限内一点,若PAB的面积为18,则m,n满足的数量关系式为_十六、填空题16在平面直角坐标系中,一个智能机器人接到如下指令,从原点O出发,按向右、向上、向右、向下的方向依次不断移动,每次移动1个单位,其行走路线如图所示,第1次移动到A1,第2次移动到A2,第n次移动到An,则A2021的坐标是_十七、解
4、答题17(1)已知,求x的值;(2)计算:.十八、解答题18求下列各式中的x:(1)x2=0(2)(x1)3=64十九、解答题19如图,已知AED=C,DEF=B,试说明EFG+BDG=180,请完成下列填空:AED=C (_)EDBC(_) DEF=EHC (_)DEF=B(已知)_(等量代换)BDEH(同位角相等,两直线平行)BDG=DFE(两直线平行,内错角相等)_(邻补角的意义)EFG+BDG=180(_)二十、解答题20如图,在平面直角坐标系中,三角形三个顶点的坐标分别为点P是三角形的边上任意一点,三角形经过平移后得到三角形,已知点的对应点(1)在图中画出平移后的三角形,并写出点的坐
5、标;(2)求三角形的面积二十一、解答题21如图,数轴的正半轴上有,三点,点,表示数和点到点的距离与点到点的距离相等,设点所表示的数为(1)请你求出数的值(2)若为的相反数,为的绝对值,求的整数部分的立方根二十二、解答题22如图,用两个边长为10的小正方形拼成一个大的正方形.(1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm2?二十三、解答题23如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”
6、或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系二十四、解答题24如图1,由线段组成的图形像英文字母,称为“形”(1)如图1,形中,若,则_;(2)如图2,连接形中两点,若,试探求与的数量关系,并说明理由;(3)如图3,在(2)的条件下,且的延长线与的延长线有交点,当点在线段的延长线上从左向右移动的过程中,直接写出与所有可能的数量关系二十五、解答题25如图,在中,与的角平分线交于点.(1)若,则 ;(2)若,则 ;(3)若,与的角平分线交
7、于点,的平分线与的平分线交于点,的平分线与的平分线交于点,则 .【参考答案】一、选择题1A解析:A【分析】根据同位角、内错角、同旁内角的意义进行判断即可【详解】解:2与3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意1与4是对顶角,因此选项B不符合题意1与3是内错角,因此选项C不符合题意2与4同旁内角,因此选项D不符合题意故选:A【点睛】本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提2D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A:翻开书中的每一页纸张,这是翻折现象;
8、B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象故选:D【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选3B【分析】根据平面直角坐标系中点的坐标特征逐项分析即可【详解】解:A.(0,3)在y轴上,故不符合题意;B.(2,1)在第二象限,故符合题意;C.(1,2) 在第四象限
9、,故不符合题意;D.(1,2) 在第三象限,故不符合题意;故选B【点睛】本题考查了平面直角坐标系中点的坐标特征,正确掌握各象限内点的坐标特点是解题关键第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为04C【分析】根据对顶角的性质、同旁内角的概念、平行公理及推论逐一进行判断即可【详解】解:对顶角相等,原命题正确; 过直线外一点有且只有一条直线与已知直线平行,原命题错误;在同一平面内,垂直于同一条直线的两条直线平行,原命题错误;两直线平行,同旁内角互补,原命题错误
10、故选:C【点睛】本题考查了平行公理及推论,对顶角、邻补角和同旁内角等知识,熟记其概念和性质是解题的关键5D【分析】分别任选其中两个条件作为已知,然后结合平行线的判定与性质,证明剩余一个条件是否成立即可【详解】解:如图所示:(1)当1=2,则3=2,故DBEC,则D=4;当C=D,故4=C,则DFAC,可得:A=F,即可证得;(2)当1=2,则3=2,故DBEC,则D=4,当A=F,故DFAC,则4=C,故可得:C=D,即可证得;(3)当A=F,故DFAC,则4=C,当C=D,则4=D,故DBEC,则2=3,可得:1=2,即可证得.故正确的有3个故选:D【点睛】本题主要考查了平行线的判定和性质,
11、正确掌握并熟练运用平行线的判定与性质是解题关键6A【分析】根据平方根、立方根及算术平方根的概念逐一计算即可得答案【详解】A.,计算正确,故该选项符合题意,B.,故该选项计算错误,不符合题意,C.,故该选项计算错误,不符合题意,D.,故该选项计算错误,不符合题意,故选:A【点睛】本题考查平方根、立方根、算术平方根的概念,熟练掌握定义是解题关键7D【分析】根据对顶角相等求出3,再根据两直线平行,同旁内角互补求出DFE,然后根据角平分线的定义求出DFH,再根据两直线平行,内错角相等解答【详解】解:1=110,3=1=110,ABCD,DFE=180-3=180-110=70,HF平分EFD,DFH=
12、DFE=70=35,ABCD,2=DFH=35故选:D【点睛】本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键8A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个解析:A【分析】到每一个横坐标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个点,【详解】解:观察图形可知,到每一个横坐
13、标结束,经过整数点的个数等于最后横坐标的平方,横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,横坐标为偶数时以横坐标为1,纵坐标以横坐标减1结束,横坐标以n结束的有n2个点,第2025个点是(45,0),2021个点的坐标是(45,4);故选:A【点睛】本题考查了点的坐标,观察出点的个数与横坐标存在平方关系是解题的关键九、填空题96【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可【详解】解:x-1=0,y-2=0,z-3=0,x=1,y=2,z=3x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x、y、z的值,代入所求代数式计算即可【详解】解:
14、x-1=0,y-2=0,z-3=0,x=1,y=2,z=3x+y+z=1+2+3=6【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0十、填空题10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3
15、,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题114【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是AB解析:4【分析】过点D作DFAC,则由AD是ABC的角平分线,DFAC, DEAB,可以得到DE=DF,可由三角形的面积的,进而解得AC的长.【详解】过点D作DFACAD是ABC的角平分线,DFAC, DEAB,DE=DF,又三角形的面积的,即,解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角
16、形的面积是解题的关键.十二、填空题12100【分析】先根据平行线的性质得出3=80,再由邻补角得到2=100【详解】如图,3=80,又2+3=180,2=180-3=180-8解析:100【分析】先根据平行线的性质得出3=80,再由邻补角得到2=100【详解】如图,3=80,又2+3=180,2=180-3=180-80=100故答案为:100【点睛】此题主要考查了平行线的性质以及邻补角,熟练掌握它们的性质是解答此题的关键十三、填空题13【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三
17、角形的性解析:【分析】根据翻折得到,根据,即可求出AC,再根据E是中点即可求解【详解】沿翻折使与重合故答案为:【点睛】此题主要考查三角形内的线段求解,解题的关键是熟知全等三角形的性质十四、填空题147【分析】由无理数的估算,先求出a、b的值,再进行计算即可【详解】解:,、为两个连续的整数,;故答案为:7【点睛】本题考查了无理数的估算,解题的关键是正确解析:7【分析】由无理数的估算,先求出a、b的值,再进行计算即可【详解】解:,、为两个连续的整数,;故答案为:7【点睛】本题考查了无理数的估算,解题的关键是正确求出a、b的值,从而进行解题十五、填空题15【分析】连接OP,将DPAB的面积分割成三个
18、小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,解析:【分析】连接OP,将DPAB的面积分割成三个小三角形,根据三个小三角形的面积的和为18进行整理即可解答【详解】解:连接OP,如图:A(2,0),B(0,3),OA=2,OB=3,AOB=90,点P(m,n)为第三象限内一点,整理可得:;故答案为:【点睛】本题考查的是平面直角坐标系中面积的求解,要注意在计算面积的时候,可根据题意适当添加辅助线,帮助自己分割图形十六、填空题16(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐
19、标【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,解析:(1011,0)【分析】根据图象可得移动4次完成一个循环,从而可得出点A2021的坐标【详解】解:A1(1,0),A2(1,1),A3(2,1),A4(2,0),A5(3,0),A6(3,1),202145051,所以A2021的坐标为(5052+1,0),则A2021的坐标是(1011,0)故答案为:(1011,0)【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般十七、解答题17(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;
20、(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【解析:(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.十八、解答题18(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1),;(2),.【点睛】本题主要考查解析:(1);(2)【分析】(1)用求平方根的方法解方程即可得到答
21、案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1),;(2),.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.十九、解答题19已知;同位角相等,两直线平行;两直线平行,内错角相等;EHC =B;DFE+EFG =180;等量代换【分析】根据同位角相等,两直线平行推出EDBC,通过两直线平行,内错角相等推出解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;EHC =B;DFE+EFG =180;等量代换【分析】根据同位角相等,两直线平行推出EDBC,通过两直线平行,内错角相等推出DEF=EHC,再运用等量代换得到EHC =B,最
22、后推出BDEH,BDG=DFE,再利用邻补角的意义推出结论,据此回答问题【详解】解:AED=C (已知)EDBC(同位角相等,两直线平行) DEF=EHC (两直线平行,内错角相等)DEF=B(已知)EHC =B (等量代换)BDEH(同位角相等,两直线平行)BDG=DFE(两直线平行,内错角相等)DFE+EFG =180(邻补角的意义)EFG+BDG=180(等量代换)【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键二十、解答题20(1)作图见解析,;(2)7【分析】(1)直接利用P点平移变化规律得出A、B、C的坐标;直接利用得出各对应点位置
23、进而得出答案;(2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出解析:(1)作图见解析,;(2)7【分析】(1)直接利用P点平移变化规律得出A、B、C的坐标;直接利用得出各对应点位置进而得出答案;(2)利用三角形ABC所在矩形面积减去周围三角形面积进而得出答案【详解】解:(1)P到点的对应点,横坐标向左平移了两个单位,纵坐标向上平移了3个单位,如图所示,三角形ABC即为所求,(2)三角形ABC的面积为:451324357【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键二十一、解答题21(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离
24、即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可【详解】解:(1)点分别表示解析:(1);(2)2【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为c的值;(2)根据题意及c的值求出m和n的值,再把m,n代入所求代数式进行计算即可【详解】解:(1)点分别表示1,;(2),的整数部分是8,【点睛】此题考查了估算无理数的大小,正确估算及是解题的关键二十二、解答题22(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸解析:
25、(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm,宽为2xcm,则3x2x=480,解得:x=因为,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm2【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式二十三、解答题23(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)
26、是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACB
27、CAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键二十四、解答题24(1)50;(2)A+C=30+,理由见解析;(3)A-DCM=30+或30-【分析】(1)过M作MNAB,由平行线的性质即可求得M的值(2)延长BA,DC交于E,解析:(1)50;(2)A+C=30+,理由见解析;(3)A-DCM=30+或30-【分析】(1)过M作MNAB,由平行线的性质即可求得M的值(2)延长BA,DC交于E,应用四边形的内角和定理与平角的定义即可解决问题(3)分两种情形分别求解即可
28、;【详解】解:(1)过M作MNAB,ABCD,ABMNCD,1=A,2=C,AMC=1+2=A+C=50;故答案为:50;(2)A+C=30+,延长BA,DC交于E,B+D=150,E=30,BAM+DCM=360-(EAM+ECM)=360-(360-E-M)=30+;即A+C=30+;(3)如下图所示:延长BA、DC使之相交于点E,延长MC与BA的延长线相交于点F,B+D=150,AMC=,E=30由三角形的内外角之间的关系得:1=30+22=3+1=30+3+1-3=30+即:A-C=30+如图所示,210-A=(180-DCM)+,即A-DCM=30-综上所述,A-DCM=30+或30
29、-【点睛】本题考查了平行线的性质解答该题时,通过作辅助线准确作出辅助线lAB,利用平行线的性质(两直线平行内错角相等)将所求的角M与已知角A、C的数量关系联系起来,从而求得M的度数二十五、解答题25(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平解析:(1)110(2)(90 +n)(3)90+n【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是ABC与ACB的角平分线,用n的代数式表示出OBC与
30、OCB的和,再根据三角形的内角和定理求出BOC的度数;(3)根据规律直接计算即可.【详解】解:(1)A=40,ABC+ACB=140,点O是AB故答案为:110;C与ACB的角平分线的交点,OBC+OCB=70,BOC=110(2)A=n,ABC+ACB=180-n,BO、CO分别是ABC与ACB的角平分线,OBC+OCBABC+ACB(ABC+ACB)(180n)90n,BOC180(OBC+OCB)90+n故答案为:(90+n);(3)由(2)得O90+n,ABO的平分线与ACO的平分线交于点O1,O1BCABC,O1CBACB,O1180(ABC+ACB)180(180A)180+n,同理,O2180+n,On180+ n,O2017180+n,故答案为:90+n【点睛】本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180