收藏 分销(赏)

八年级上册压轴题数学试题带答案[004].doc

上传人:天**** 文档编号:1861228 上传时间:2024-05-10 格式:DOC 页数:16 大小:531.04KB
下载 相关 举报
八年级上册压轴题数学试题带答案[004].doc_第1页
第1页 / 共16页
八年级上册压轴题数学试题带答案[004].doc_第2页
第2页 / 共16页
八年级上册压轴题数学试题带答案[004].doc_第3页
第3页 / 共16页
八年级上册压轴题数学试题带答案[004].doc_第4页
第4页 / 共16页
八年级上册压轴题数学试题带答案[004].doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、八年级上册压轴题数学试题带答案1如图1,在平面直角坐标系中,AOAB,BAO90,BO8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b24a2b+50,连接OD,OE,设运动的时间为t秒(1)求a,b的值;(2)当t为何值时,BADOAE;(3)如图2,在第一象限存在点P,使AOP30,APO15,求ABP2如图,中,(1)如图1,求证:;(2)如图2,请直接用几何语言写出、的位置关系_;(3)证明(2)中的结论3在中,点在边上,且是射线上一动点(不与点重合,且),在射线上截取,连接当点在线段上时,

2、若点与点重合时,请说明线段;如图2,若点不与点重合,请说明;当点在线段的延长线上时,用等式表示线段之间的数量关系(直接写出结果,不需要证明)4等腰RtABC中,BAC=90,AB=AC,点A、点B分别是y轴、x轴上两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E(1)如图(1),已知C点的横坐标为-1,直接写出点A的坐标;(2)如图(2),当等腰RtABC运动到使点D恰为AC中点时,连接DE求证:ADB=CDE;(3)如图(3),若点A在x轴上,且A(-4,0),点B在y轴的正半轴上运动时,分别以OB、AB为直角边在第一、二象限作等腰直角BOD和等腰直角ABC,连结CD交,轴于点P,问当

3、点B在y轴的正半轴上运动时,BP的长度是否变化?若变化请说明理由,若不变化,请求出BP的长度5ABC、DPC都是等边三角形(1)如图1,求证:APBD;(2)如图2,点P在ABC内,M为AC的中点,连PM、PA、PB,若PAPM,且PB2PM求证:BPBD;判断PC与PA的数量关系并证明6如图1,在平面直角坐标系中,且ACB90,ACBC(1)求点B的坐标;(2)如图2,若BC交y轴于点M,AB交x轴与点N,过点B作轴于点E,作轴于点F,请探究线段MN,ME,NF的数量关系,并说明理由;(3)如图3,若在点B处有一个等腰RtBDG,且BDDG,BDG90,连接AG,点H为AG的中点,试猜想线段

4、DH与线段CH的数量关系与位置关系,并证明你的结论7如图1,A(2,6),C(6,2),ABy轴于点B,CDx轴于点D(1)求证:AOBCOD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EFEFCE且EFCE,点G为AF中点连接EG,EO,求证:OEG458方法探究:已知二次多项式,我们把代入多项式,发现,由此可以推断多项式中有因式(x3)设另一个因式为(xk),多项式可以表示成,则有,因为对应项的系数是对应相等的,即,解得,因此多项式分解因式得:我们把以上分解因式的方法叫“试根法”问题解决:(1)对于二次

5、多项式,我们把x 代入该式,会发现成立;(2)对于三次多项式,我们把x1代入多项式,发现,由此可以推断多项式中有因式(),设另一个因式为(),多项式可以表示成,试求出题目中a,b的值;(3)对于多项式,用“试根法”分解因式【参考答案】2(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;解析:(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;(2)先由运动得出BD|82t|,

6、再由全等三角形的性质的出货BDOE,建立方程求解即可得出结论(3)先判断出OAPBAQ(SAS),得出OPBQ,ABQAOP30,AQBAPO15,再求出OAP135,进而判断出OAQBAQ(SAS),得出OQABQA15,OQBQ,再判断出OPQ是等边三角形,得出OQP60,进而求出BQP30,再求出PBQ75,即可得出结论【详解】解:(1)a2+b24a2b+50,(a2)2+(b1)20,a20,b10,a2,b1;(2)由(1)知,a2,b1,由运动知,OD2t,OEt,OB8,DB|82t|BADOAE,DBOE,|82t|t,解得,t(如图1)或t8(如图2);(3)如图3,过点A

7、作AQAP,使AQAP,连接OQ,BQ,PQ,则APQ45,PAQ90,OAB90,PAQOAB,OAB+BAPPAQ+BAP,即:OAPBAQ,OAAB,ADAD,OAPBAQ(SAS),OPBQ,ABQAOP30,AQBAPO15,在AOP中,AOP30,APO15,OAP180AOPAPO135,OAQ360OAPPAQ13590135OAP,OAAB,ADAD,OAQBAQ(SAS),OQABQA15,OQBQ,OPBQ,OQOP,APQ45,APO15,OPQAPO+APQ60,OPQ是等边三角形,OQP60,BQPOQPOQABQA60151530,BQPQ,PBQ(180BQP)

8、75,ABPABQ+PBQ30+75105【点睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键3(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结解析:(1)见解析;(2);(3)见解析【分析】(1)根据垂直的定义可得ADC=E=90,根据余角的性质可得ACD=BAE,然后根据AAS即可证得结论;(2)由于要得出、的位置关系,结合图形可猜想:;(3)如图,作CPAC于

9、点C,延长FD交CP于点P,先证明BAEFCP,可得3=P,AB=CP,然后证明ACDPCD,可得4=P,进一步即可推出4+2=90,问题得证【详解】解:(1)证明:,ADC=E=90,DAC+ACD=90,DAC+BAE=90,ACD=BAE,在DAC和EBA中,ADC=E,ACD=BAE,AC=AB,(AAS);(2)结合图形可得:;故答案为:;(3)证明:如图,作CPAC于点C,延长FD交CP于点P,AF=CE,AE=CF,1=2,BAE=FCP=90,BAEFCP,3=P,AB=CP,ABC=ACB=45,PCP=90,AB=CP,FCD=45,AC=PC,ACB=PCD,CD=CD,

10、ACDPCD,4=P,3=P,3=4,3+2=90,4+2=90,AGE=90,即【点睛】本题考查了等腰直角三角形的性质、全等三角形的判定和性质,正确添加辅助线、熟练掌握全等三角形的判定和性质是解题的关键4(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得解析:(1)证明见解析;证明见解析;(2)BFAE-CD【分析】(1)根据等边对等角,求到,再由含有60角的等腰三角形是等边三角形得到是等边三角形,之后根据等边三角形的性质以及邻补角的性质得到,推出,根据全等三

11、角形的性质即可得出结论;过点A做AGEF交BC于点G,由DEF为等边三角形得到DADG,再推出AEGF,根据线段的和差即可整理出结论;(2)根据题意画出图形,作出AG,由(1)可知,AE=GF,DC=BG,再由线段的和差和等量代换即可得到结论【详解】(1)证明:,且E与A重合,是等边三角形在和中 如图2,过点A做AGEF交BC于点G,ADB60DEDFDEF为等边三角形AGEFDAGDEF60,AGDEFD60DAGAGDDADGDADEDGDF,即AEGF由易证AGBADCBGCDBFBGGFCDAE(2)如图3,和(1)中相同,过点A做AGEF交BC于点G,由(1)可知,AE=GF,DC=

12、BG,故【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键5(1)A(0,1);(2)见解析;(3)不变,BP= 2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易解析:(1)A(0,1);(2)见解析;(3)不变,BP= 2【分析】(1)如图(1),过点C作CFy轴于点F,构建全等三角形:ACFABO(AAS),结合该全等三角形的对应边相等易得OA的长度,由点A是y轴上一点可以推知点A的坐标;(2)过点C作CGAC交y轴于点G,则ACGABD(ASA),

13、即得CG=AD=CD,ADB=G,由DCE=GCE=45,可证DCEGCE(SAS)得CDE=G,从而得到结论;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点E,构建全等三角形:CBEBAO(AAS),结合全等三角形的对应边相等推知:CE=BO,BE=AO=4再结合已知条件和全等三角形的判定定理AAS得到:CPEDPB,故BP=EP=2(1)如图(1),过点C作CFy轴于点F,CFy轴于点F,CFA=90,ACF+CAF=90,CAB=90,CAF+BAO=90,ACF=BAO,在ACF和ABO中,ACFABO(AAS),CF=OA=1,A(0,1);(2)如图2,过点C作C

14、GAC交y轴于点G,CGAC,ACG=90,CAG+AGC=90,AOD=90,ADO+DAO=90,AGC=ADO,在ACG和ABD中,ACGABD(AAS),CG=AD=CD,ADB=G,ACB=45,ACG=90,DCE=GCE=45,在DCE和GCE中,DCEGCE(SAS),CDE=G,ADB=CDE;(3)BP的长度不变,理由如下:如图(3),过点C作CEy轴于点EABC=90,CBE+ABO=90BAO+ABO=90,CBE=BAOCEB=AOB=90,AB=AC,CBEBAO(AAS),CE=BO,BE=AO=4BD=BO,CE=BDCEP=DBP=90,CPE=DPB,CPE

15、DPB(AAS),BP=EP=2【点睛】本题考查了三角形综合题主要利用了全等三角形的性质定理与判定定理,解决本题的关键是作出辅助线,构建全等三角形6(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接C解析:(1)证明过程见解析;(2)证明过程见解析;PC=2PA,理由见解析【分析】(1)证明BCDACP(SAS),可得结论;(2)如图2中,延长PM到K,使得MK=PM,连接CK证明AMPCMK(SAS),推出MP=MK,AP=CK,APM=K=90,再证明PDBPCK(SSS

16、),可得结论;结论:PC=2PA想办法证明DPB=30,可得结论(1)证明:如图1中,ABC,CDP都是等边三角形,CB=CA,CD=CP,ACB=DCP=60,BCD=ACP,在BCD和ACP中,BCDACP(SAS),BD=AP;(2)证明:如图2中,延长PM到K,使得MK=PM,连接CKAPPM,APM=90,在AMP和CMK中,AMPCMK(SAS),MP=MK,AP=CK,APM=K=90,同法可证BCDACP,BD=PA=CK,PB=2PM,PB=PK,PD=PC,PDBPCK(SSS),PBD=K=90,PBBD解:结论:PC=2PAPDBPCK,DPB=CPK,设DPB=CPK

17、=x,则BDP=90-x,APC=CDB,90+x=60+90-x,x=30,DPB=30,PBD=90,PD=2BD,PC=PD,BD=PA,PC=2PA【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,等边三角形的性质,直角三角形30角的性质等知识,解题的关键是学会添加常用辅助线,关注全等三角形解决问题7(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点H证明ATCCHB(AAS),推出ATCH6,CT解析:(1)(2),见解析(3)且,见解析【分析】(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT

18、的延长线于点H证明ATCCHB(AAS),推出ATCH6,CTBH2,可得结论;(2)结论:MNME+NF证明BFNBEK(SAS),推出BNBK,FBNEBK,再证明BMNBMK(SAS),推出MNMK,可得结论;(3)结论:DHCH,DHCH如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点M证明JDC是等腰直角三角形,可得结论【详解】解:(1)如图1中,过点C作CTy轴于点T,根点B作BHCT交CT的延长线于点HA(0,4),C(2,2),OA4,OTCT2,AT4+26,ACBATCH90,CAT+ACT90,BCH+CBH90,CATBCH,CACB,ATCCH

19、B(AAS),ATCH6,CTBH2,THCHCT4,B(4,-4);(2)结论:MNME+NF理由:在射线OE上截取EKFN,连接BKB(4,4),BEy轴,BFx轴,BEBF4,BEOBFOEOF90,四边形BEOF是矩形,EBF90,EKFN,BFNBEK90,BFNBEK(SAS),BNBK,FBNEBK,NBKFBE90,MBN45,MBNBMK45,BMBM,BMNBMK(SAS),MNMK,MKME+EK,MNEM+FN;(3)结论:DHCH,DHCH理由:如图3中,延长DH到J,使得HJDH,连接AJ,CJ,延长DG交AC于点MAHHG,AHJGHD,HJHD,AHJGHD(S

20、AS),AJDG,AJHDGH,AJDM,JACAMD,DGBD,AJBD,MCBBDM90,CBD+CMD180,AMD+CMD180,AMDCBD,CAJCBD,CACB,CAJCBD(SAS),CJCD,ACJBCD,JCDACB90,JHHD,CHDJ,CHJHHD,即CHDH,CHDH【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题8(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,

21、从而得出,推出,根据证明,得出即可得证;(3)延解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)根据即可证明;(2)过点作轴,交于点,得出,由平行线的性质得,由轴得,由得,故可得,从而得出,推出,根据证明,得出即可得证;(3)延长到,使,连接,延长交于点,根据证明,得出,故,由平行线的性质得出,进而推出,根据证明,故,即可证明【详解】(1)轴于点,轴于点,;(2)如图2,过点作轴,交于点,轴, 在与中,即点为中点;(3)如图3,延长到,使,连接,延长交于点,即【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键9(1)2(2)a=0,b=-3;(3)【分

22、析】(1)将x=2代入即可;(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(解析:(1)2(2)a=0,b=-3;(3)【分析】(1)将x=2代入即可;(2)由题意得x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,再由系数关系求a、b即可;(3)多项式有因式(x-2),设另一个因式为(x2+ax+b),则x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,再由系数关系求a、b即可(1)解:当x=2时,x2-4=0,故答案为:2;(2)解:由题意可知x3-x2-3x+3=(x-1)(x2+ax+b),x3-x2-3x+3=x3-(1-a)x2-(a-b)x-b,1-a=1,b=-3,a=0,b=-3;(3)解:当x=2时,x3+4x2-3x-18=8+16-6-18=0,多项式有因式(x-2),设另一个因式为(x2+ax+b),x3+4x2-3x-18=(x-2)(x2+ax+b),x3+4x2-3x-18=x3+(a-2)x2-(2a-b)x-2b,a-2=4,2b=18,a=6,b=9,x3+4x2-3x-18=(x-2)(x2+6x+9)=(x-2)(x+3)2【点睛】本题考查因式分解的意义,理解“试根法”的本质,多项式乘多项式的正确展开是解题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服