资源描述
人教版七年级数学下册期末测试(及答案)(1)
一、选择题
1.如图,下列说法正确的是( )
A.与是同位角 B.与是内错角
C.与是同旁内角 D.与是同位角
2.下列图案是一些汽车的车标,可以看作由“基本图案”平移得到的是()
A. B. C. D.
3.如图,小手盖住的点的坐标可能为( )
A. B. C. D.
4.下列命题中,假命题是( )
A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行
B.在同一平面内,过一点有且只有一条直线与已知直线垂直
C.两条直线被第三条直线所截,同旁内角互补
D.两点的所有连线中,线段最短
5.若的两边与的两边分别平行,且,那么的度数为( )
A. B. C.或 D.或
6.下列各式中,正确的是( )
A.=±4 B.±=4 C. D.
7.①如图1,,则;②如图2,,则;③如图3,,则;④如图4,直线,点O在直线EF上,则.以上结论正确的个数是( )
A.1个 B.2个 C.3个 D.4个
8.如图,,,,,…按此规律,点的坐标为( )
A. B.
C. D.
九、填空题
9.已知,则a+b为_____.
十、填空题
10.在平面直角坐标系中,已知点A的坐标为(﹣2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是___.
十一、填空题
11.如图,在中,.三角形的外角和的角平分线交于点E,则_____度.
十二、填空题
12.如图,,点在上,点在上,则的度数等于______.
十三、填空题
13.如图,将一张长方形纸条折成如图的形状,若,则的度数为____.
十四、填空题
14.下列命题中,属于真命题的有______(填序号):①互补的角是邻补角;②无理数是无限不循环小数;③同位角相等;④两条平行线的同旁内角的角平分线互相垂直;⑤如果,那么.
十五、填空题
15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________.
十六、填空题
16.如图,在平面直角坐标系中,点由原点出发,第一次跳动至点,第二次向左跳动3个单位至点,第三次跳动至点,第四次向左跳动5个单位至点,第五次跳动至点,…,依此规律跳动下去,点的第2020次跳动至点的坐标是_______.
十七、解答题
17.(1)计算:
(2)解方程:
十八、解答题
18.求下列各式中的:
(1);
(2);
(3).
十九、解答题
19.推理填空:如图,已知∠B=∠CGF,∠DGF=∠F;求证:∠B+∠F=180°.
请在括号内填写出证明依据.
证明:∵∠B=∠CGF(已知),
∴AB∥CD( ).
∵∠DGF=∠F(已知),
∴ //EF( ).
∴AB//EF( ).
∴∠B+∠F=180°( ).
二十、解答题
20.将△ABO向右平移4个单位,再向下平移1个单位,得到三角形A′B′O′
(1)请画出平移后的三角形A′B′O′.
(2)写出点A′、O′的坐标.
二十一、解答题
21.数学活动课上,王老师说:“是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:
(1)填空题:的整数部分是 ;小数部分是
(2)已知8+=x+y,其中x是一个整数,且0<y<1,求出2x+(y-)2012的值.
二十二、解答题
22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
二十三、解答题
23.综合与实践
背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.
已知:AM∥CN,点B为平面内一点,AB⊥BC于B.
问题解决:(1)如图1,直接写出∠A和∠C之间的数量关系;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,则∠EBC= .
二十四、解答题
24.如图所示,已知,点P是射线AM上一动点(与点A不重合),BC、BD分别平分和,分别交射线AM于点C、D,且
(1)求的度数.
(2)当点P运动时,与之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.
(3)当点P运动到使时,求的度数.
二十五、解答题
25.阅读下列材料并解答问题:在一个三角形中,如果一个内角的度数是另一个内角度数的3倍,那么这样的三角形我们称为“梦想三角形”例如:一个三角形三个内角的度数分别是120°,40°,20°,这个三角形就是一个“梦想三角形”.反之,若一个三角形是“梦想三角形”,那么这个三角形的三个内角中一定有一个内角的度数是另一个内角度数的3倍.
(1)如果一个“梦想三角形”有一个角为108°,那么这个“梦想三角形”的最小内角的度数为__________
(2)如图1,已知∠MON=60°,在射线OM上取一点A,过点A作AB⊥OM交ON于点B,以A为端点作射线AD,交线段OB于点C(点C不与O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“梦想三角形”,为什么?
(3)如图2,点D在△ABC的边上,连接DC,作∠ADC的平分线交AC于点E,在DC上取一点F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“梦想三角形”,求∠B的度数.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角可得答案.
【详解】
解:∵∠3与∠1是同位角,∠C与∠1是内错角,∠2与∠3是邻补角,∠B与∠3是同旁内角,
∴B选项正确,
故选:B.
【点睛】
此题主要考查了三线八角,在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.
2.D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
解析:D
【分析】
根据平移变换、轴对称变换、旋转变换的特征进行判断,便可找到答案.
【详解】
解:A、是由基本图形旋转得到的,故不选.
B、是轴对称图形,故不选.
C、是由基本图形旋转得到的,故不选.
D、是由基本图形平移得到的,故选此选项.
综上,本题选择D.
【点睛】
本题考查的旋转、对称、平移的基本知识,解题关键是观察图形特征进行判断.
3.C
【分析】
根据各象限内点的坐标特征判断即可.
【详解】
由图可知,小手盖住的点在第四象限,
∴点的横坐标为正数,纵坐标为负数,
∴(2,-3)符合.其余都不符合
故选:C.
【点睛】
本题考查了各象限内点的坐标特征,熟记各象限内点的坐标特征是解题的关键.
4.C
【分析】
分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.
【详解】
A.如果两条直线都与第三条直线平行,那么这两条直线也互相平行,
选项A是真命题,故不符合题意;
B.在同一平面内,过一点有且只有一条直线与已知直线垂直,
选项B是真命题,故不符合题意;
C.两条直线被第三条直线所截,同旁内角不一定互补,
选项C是假命题,故符合题意;
D. 两点的所有连线中,线段最短,
选项D是真命题,故不符合题意.
故选:C.
【点睛】
本题主要考查了命题的真假判断,属于基础题,正确的命题叫真命题,错误的命题叫做假命题,判断命题的真假关键是要熟悉课本中的性质定理.
5.A
【分析】
根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案.
【详解】
解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A,
又∵∠B=∠A+20°,
∴∠A+20°=∠A,
∵此方程无解,
∴此种情况不符合题意,舍去;
当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°;
又∵∠B=∠A+20°,
∴∠A+20°+∠A=180°,
解得:∠A=80°;
综上所述,的度数为80°,
故选:A.
【点睛】
本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案.
6.C
【分析】
根据算术平方根与平方根、立方根的定义逐项判断即可得.
【详解】
A、,此项错误;
B、,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.
7.B
【分析】
如图1所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠C+∠CEF=180°,则∠A+∠C+∠AEC=360°,故①错误;如图2所示,过点P作PE//AB,由平行线的性质即可得到∠A=∠APE=180°,∠C=∠CPE,再由∠APC=∠APE=∠CPE,即可得到∠APC=∠A-∠C,即可判断②;如图3所示,过点E作EF//AB,由平行线的性质即可得到∠A+∠AEF=180°,∠1=∠CEF,再由∠AEF+∠CEF=∠AEC,即可判断③ ;由平行线的性质即可得到,,再由,即可判断④.
【详解】
解:①如图所示,过点E作EF//AB,
∵AB//CD,
∴AB//CD//EF,
∴∠A+∠AEF=180°,∠C+∠CEF=180°,
∴∠A+∠AEF+∠C+∠CEF=360°,
又∵∠AEF+∠CEF=∠AEC,
∴∠A+∠C+∠AEC=360°,故①错误;
②如图所示,过点P作PE//AB,
∵AB//CD,
∴AB//CD//PE,
∴∠A=∠APE=180°,∠C=∠CPE,
又∵∠APC=∠APE=∠CPE,
∴∠APC=∠A-∠C,故②正确;
③如图所示,过点E作EF//AB,
∵AB//CD,
∴AB//CD//EF,
∴∠A+∠AEF=180°,∠1=∠CEF,
又∵∠AEF+∠CEF=∠AEC,
∴180°-∠A+∠1=∠AEC,故③错误;
④∵,
∴,,
∵,
∴,
∴,故④正确;
故选B
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质
8.C
【分析】
经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象
解析:C
【分析】
经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象限的点A2(1,1),A6(2,2),A10(3,3)…观察易得到点的坐标=.
【详解】
解:由题可知
第一象限的点:A2,A6,A10…角标除以4余数为2;
第二象限的点:A3,A7,A11…角标除以4余数为3;
第三象限的点:A4,A8,A12…角标除以4余数为0;
第四象限的点:A5,A9,A13…角标除以4余数为1;
由上规律可知:2022÷4=505…2
∴点A2022在第一象限.
观察图形,可知:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),…,
∴第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标)
∴点A4n-2的坐标为(,)(n为正整数),
∴点A2022的坐标为(506,506).
故选C.
【点睛】
本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标)求解.
九、填空题
9.-6
【解析】
试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6.
考点:非负数的性质:算术平方根;非负数的性质:绝对值.
点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数
解析:-6
【解析】
试题分析:∵,∴,解得=1,b=-7,∴.故应填为:-6.
考点:非负数的性质:算术平方根;非负数的性质:绝对值.
点评:本题要求掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.
十、填空题
10.(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴
解析:(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴对称,
∴点P的坐标是(2,﹣5).
故答案为:(2,﹣5).
【点睛】
本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.
十一、填空题
11.【分析】
如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.
【详解】
解:如图,∵∠B=40°,∴∠
解析:【分析】
如图,先根据三角形的内角和定理求出∠1+∠2的度数,再求出∠DAC+∠ACF的度数,然后根据角平分线的定义可求出∠3+∠4的度数,进而可得答案.
【详解】
解:如图,∵∠B=40°,∴∠1+∠2=180°-∠B=140°,
∴∠DAC+∠ACF=360°-∠1-∠2=220°,
∵AE和CE分别是和的角平分线,
∴,
∴,
∴.
故答案为:70.
【点睛】
本题考查了三角形的内角和定理和角平分线的定义,属于基础题型,熟练掌握三角形的内角和定理和整体的数学思想是解题的关键.
十二、填空题
12.180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥
解析:180°
【分析】
根据平行线的性质可得∠1=∠AFD,从而得到∠EFC=180°-∠EFD,∠ECF=180°-∠3,再根据∠2+∠ECF+∠EFC=180°,即可得到答案
【详解】
解:∵AB∥CD,
∴∠1=∠AFD,
∵∠EFC=180°-∠EFD,∠ECF=180°-∠3,∠2+∠ECF+∠EFC=180°,
∴∠2+360°-∠1-∠3=180°,
∴∠1+∠3-∠2=180°,
故答案为:180°
【点睛】
本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解
十三、填空题
13.55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
解析:55°
【分析】
依据平行线的性质以及折叠的性质,即可得到∠2的度数.
【详解】
解:如图所示,
∵∠1=70°,
∴∠3+∠4=180°-∠1=110°,
又∵折叠,
∴∠3=∠4=55°,
∵ABDE,
∴∠2=∠3=55°,
故答案为:55°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.
十四、填空题
14.②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③
解析:②④⑤
【分析】
根据邻补角、无理数、平行线的性质和平方根进行判断即可.
【详解】
解:①邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;
②无理数是无限不循环小数,正确,是真命题;
③两直线平行,同位角相等,故错误,是假命题;
④如图所示,直线a,b被直线c所截,且a//b,直线AB平分∠CAE,直线CD平分∠ACF,AB,CD相交于点G.求证:AB⊥CD.
证明:∵a//b,
∴∠CAE+∠ACF=180°.
又AB平分∠CAE,CD平分∠ACF,
所以∠1=∠CAE,∠2=∠ACF.
所以∠1+∠2=∠CAE+∠ACF
=(∠CAE+∠ACF)=×180°=90°.
又∵△ACG的内角和为180°,
∴∠AGC=180°-(∠1+∠2)=180°-90°=90°,
∴AB⊥CD.
∴两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;
⑤如果,那么,正确,是真命题.
故答案为:②④⑤.
【点睛】
此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.
十五、填空题
15.或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3
解析:或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,
当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去),
综上,x的值为2或,
故答案为2或.
【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.
十六、填空题
16.【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,
解析:
【分析】
根据点的坐标、坐标的平移寻找规律即可求解.
【详解】
解:因为P1(1,1),P2(-2,1),
P3(2,2),P4(-3,2),
P5(3,3),P6(-4,3),
P7(4,4),P8(-5,4), …
P2n-1(n,n),P2n(-n-1,n)(n为正整数),
所以2n=2020, ∴n=1010, 所以P 2020(-1011,1010),
故答案为(-1011,1010).
【点睛】
本题考查了点的坐标、坐标的平移,解决本题的关键是寻找点的变化规律.
十七、解答题
17.(1);(2)x=
【分析】
(1)先算乘方、绝对值和开方,再算乘法,最后算加减;
(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.
【详解】
解:(1)
=
=
解析:(1);(2)x=
【分析】
(1)先算乘方、绝对值和开方,再算乘法,最后算加减;
(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.
【详解】
解:(1)
=
=
=;
(2),
去分母,可得:3(x+1)-6=2(2-3x),
去括号,可得:3x+3-6=4-6x,
移项,可得:3x+6x=4-3+6,
合并同类项,可得:9x=7,
系数化为1,可得:x=.
【点睛】
此题主要考查了实数的混合运算,解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.
十八、解答题
18.(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1
解析:(1)0.3;(2);(3)或
【分析】
(1)先移项,再求立方根即可;
(2)先两边同时除以49,再求平方根即可;
(3)先开平方,可得两个一元一次方程,再解一元一次方程即可.
【详解】
解:(1)∵,
∴,
∴;
(2)∵,
∴,
∴;
(3)∵,
∴或,
解得:或.
【点睛】
本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键.
十九、解答题
19.同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF
解析:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补
【分析】
根据平行线的判定得出AB∥CD,CD∥EF,求出AB∥EF,根据平行线的性质得出即可.
【详解】
证明:∵∠B=∠CGF(已知),
∴AB∥CD(同位角相等,两直线平行),
∵∠DGF=∠F(已知 ),
∴CD∥EF(内错角相等,两直线平行),
∴AB∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),
∴∠B+∠F=180°(两直线平行,同旁内角互补),
故答案为:同位角相等,两直线平行;CD;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.
【点睛】
本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.
二十、解答题
20.(1)见解析;(2)A′,O′
【分析】
(1)分别作出A,B,O的对应点A′,B′,O′即可.
(2)根据点的位置写出坐标即可.
【详解】
解:(1)如图,△A′B′O′即为所求作.
(2)A′(
解析:(1)见解析;(2)A′,O′
【分析】
(1)分别作出A,B,O的对应点A′,B′,O′即可.
(2)根据点的位置写出坐标即可.
【详解】
解:(1)如图,△A′B′O′即为所求作.
(2)A′(2,1),O′(4,−1).
【点睛】
本题考查作图−平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.
二十一、解答题
21.(1)1;-1(2)19
【分析】
(1)根据已知的条件就可以求出;
(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.
【详解】
解:(1)∵1<<2,
∴的整数部分是1;小
解析:(1)1;-1(2)19
【分析】
(1)根据已知的条件就可以求出;
(2)先估算的范围,进一步确定8+的范围,即可求出x,y的值,即可解答.
【详解】
解:(1)∵1<<2,
∴的整数部分是1;小数部分是-1;
(2)解:∵1<<2,
∴9<8+<10,
∵8+=x+y,且x是一个整数,0<y<1,
∴x=9,y=8+﹣9=﹣1,
∴2x+(y-)2012=2×9+(﹣1-)2012=18+1=19.
【点睛】
本题考查了估算无理数的大小,解决本题的关键是估算的范围.
二十二、解答题
22.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
二十三、解答题
23.(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质
解析:(1);(2)见解析;(3)105°
【分析】
(1)通过平行线性质和直角三角形内角关系即可求解.
(2)过点B作BG∥DM,根据平行线找角的联系即可求解.
(3)利用(2)的结论,结合角平分线性质即可求解.
【详解】
解:(1)如图1,设AM与BC交于点O,∵AM∥CN,
∴∠C=∠AOB,
∵AB⊥BC,
∴∠ABC=90°,
∴∠A+∠AOB=90°,
∠A+∠C=90°,
故答案为:∠A+∠C=90°;
(2)证明:如图2,过点B作BG∥DM,
∵BD⊥AM,
∴DB⊥BG,
∴∠DBG=90°,
∴∠ABD+∠ABG=90°,
∵AB⊥BC,
∴∠CBG+∠ABG=90°,
∴∠ABD=∠CBG,
∵AM∥CN,
∴∠C=∠CBG,
∴∠ABD=∠C;
(3)如图3,过点B作BG∥DM,
∵BF平分∠DBC,BE平分∠ABD,
∴∠DBF=∠CBF,∠DBE=∠ABE,
由(2)知∠ABD=∠CBG,
∴∠ABF=∠GBF,
设∠DBE=α,∠ABF=β,
则∠ABE=α,∠ABD=2α=∠CBG,
∠GBF=∠AFB=β,
∠BFC=3∠DBE=3α,
∴∠AFC=3α+β,
∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,
∴∠FCB=∠AFC=3α+β,
△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,
∵AB⊥BC,
∴β+β+2α=90°,
∴α=15°,
∴∠ABE=15°,
∴∠EBC=∠ABE+∠ABC=15°+90°=105°.
故答案为:105°.
【点睛】
本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.
二十四、解答题
24.(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解
解析:(1);(2)不变化,,理由见解析;(3)
【分析】
(1)结合题意,根据角平分线的性质,得;再根据平行线的性质计算,即可得到答案;
(2)根据平行线的性质,得,;结合角平分线性质,得,即可完成求解;
(3)根据平行线的性质,得;结合,推导得;再结合(1)的结论计算,即可得到答案.
【详解】
(1)∵BC,BD分别评分和,
∴,
∴
又∵,
∴
∵,
∴
∴;
(2)∵,
∴,
又∵BD平分
∴,
∴;
∴与之间的数量关系保持不变;
(3)∵,
∴
又∵,
∴,
∵
∴
由(1)可得,
∴.
【点睛】
本题考查了角平分线、平行线的知识;解题的关键是熟练掌握角平分线、平行线的性质,从而完成求解.
二十五、解答题
25.(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.
【分析】
(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,
解析:(1)36°或18°;(2)△AOB、△AOC都是“梦想三角形”,证明详见解析;(3)∠B=36°或∠B=.
【分析】
(1)根据三角形内角和等于180°,如果一个“梦想三角形”有一个角为108°,可得另两个角的和为72°,由三角形中一个内角是另一个内角的3倍时,可以分别求得最小角为180°﹣108°﹣108÷3°=36°,72°÷(1+3)=18°,由此比较得出答案即可;
(2)根据垂直的定义、三角形内角和定理求出∠ABO、∠OAC的度数,根据“梦想三角形”的定义判断即可;
(3)根据同角的补角相等得到∠EFC=∠ADC,根据平行线的性质得到∠DEF=∠ADE,推出DE∥BC,得到∠CDE=∠BCD,根据角平分线的定义得到∠ADE=∠CDE,求得∠B=∠BCD,根据“梦想三角形”的定义求解即可.
【详解】
解:当108°的角是另一个内角的3倍时,
最小角为180°﹣108°﹣108÷3°=36°,
当180°﹣108°=72°的角是另一个内角的3倍时,
最小角为72°÷(1+3)=18°,
因此,这个“梦想三角形”的最小内角的度数为36°或18°.
故答案为:18°或36°.
(2)△AOB、△AOC都是“梦想三角形”
证明:∵AB⊥OM,
∴∠OAB=90°,
∴∠ABO=90°﹣∠MON=30°,
∴∠OAB=3∠ABO,
∴△AOB为“梦想三角形”,
∵∠MON=60°,∠ACB=80°,∠ACB=∠OAC+∠MON,
∴∠OAC=80°﹣60°=20°,
∴∠AOB=3∠OAC,
∴△AOC是“梦想三角形”.
(3)解:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,
∴∠EFC=∠ADC,
∴AD∥EF,
∴∠DEF=∠ADE,
∵∠DEF=∠B,
∴∠B=∠ADE,
∴DE∥BC,
∴∠CDE=∠BCD,
∵AE平分∠ADC,
∴∠ADE=∠CDE,
∴∠B=∠BCD,
∵△BCD是“梦想三角形”,
∴∠BDC=3∠B,或∠B=3∠BDC,
∵∠BDC+∠BCD+∠B=180°,
∴∠B=36°或∠B=.
【点睛】
本题考查的是三角形内角和定理、“梦想三角形”的概念,用分类讨论的思想解决问题是解本题的关键.
展开阅读全文