资源描述
人教版部编版八年级下册数学期末试卷测试卷(word版,含解析)
一、选择题
1.函数中自变量的取值范围是( )
A. B. C. D.
2.如图,正方形网格中的,若小方格边长为,则的形状为( )
A.直角三角形 B.锐角三角形
C.钝角三角形 D.以上答案都不对
3.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )
A.AB∥CD,AD∥BC B.AD∥BC,AB=CD
C.OA=OC,OB=OD D.AB=CD,AD=BC
4.甲、乙两人各射击5次,成绩如表.根据数据分析,在两人的这5次成绩中( )
成绩(单位:环)
甲
3
7
8
8
10
乙
7
7
8
9
10
A.甲的平均数大于乙的平均数
B.甲的中位数小于乙的中位数
C.甲的众数大于乙的众数
D.甲的方差小于乙的方差
5.已知直角三角形的两条直角边长分别为a和b,斜边长为c.①如果a=12,b=5,那么c=13;②如果a=3,c=4,那么b=5;③如果c=10,b=9,那么a=.其中正确的是( )
A.①②③ B.①③ C.①② D.②③
6.如图,将一个等腰直角三角形△ABC按如图方式折叠,若DE=a,DC=b,下列四个结论:①平分∠BDE;②BC长为2a+b;③△是等腰三角形;④△CED的周长等于BC的长.其中,正确的是( )
A.①②④ B.②③④ C.②③ D.②④
7.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为( )
A.18 B.20 C.21 D.24
8.如图,在平面直角坐标系中,已知A(5,0)点P为线段OA上任意一点.在直线y=x上取点E,使PO=PE,延长PE到点F,使PA=PF,分别取OE、AF中点M、N,连结MN,则MN的最小值是( )
A.2.5 B.2.4 C.2.8 D.3
二、填空题
9.二次根式中字母x的取值范围是__________.
10.如图,菱形的对角线与相交于点.已知,.那么这个菱形的面积为__________.
11.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,BC=12cm,AC=9cm,那么BD的长是_____.
12.如果矩形的两条对角线所成的钝角是,那么对角线与短边之比为______
13.在平面直角坐标中,点A(﹣3,2)、B(﹣1,2),直线y=kx(k≠0)与线段AB有交点,则k的取值范围为___.
14.如图,两个完全相同的三角尺ABC和DEF在直线l上滑动.要使四边形CBFE为菱形,还需添加的一个条件是____(写出一个即可).
15.小明从家跑步到学校,接着马上原路步行回家.如图是小明离家的路程y(米)与时间t(分)的关系图象,则小明回家的速度是每分钟步行____________米.
16.如图,在矩形ABCD中,BC=4,CD=3,将△ABE沿BE折叠,使点A恰好落在对角线BD上的点F处,则DE的长是________.
三、解答题
17.计算题
(1);
(2).
18.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力.如图所示,有一台风中心沿东西方向由A向B移动,已知点C为一海港,且点C与直线上的两点A,B的距离分别为:,以台风中心为圆心周围以内为受影响区域.
(1)请计算说明海港C会受到台风的影响;
(2)若台风的速度为,则台风影响该海港持续的时间有多长?
19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A(﹣1,﹣1),B(2,2).
(1)线段AB的长为 ;
(2)在小正方形的顶点上找一点C,连接AC,BC,使得S△ABC=.
①用直尺画出一个满足条件的△ABC;
②写出所有符合条件的点C的坐标.
20.如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.
(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.
21.阅读下面的材料,解答后面提出的问题:
黑白双雄,纵横江湖;双剑合壁,天下无敌,这是武侠小说中的常见描述,其意思是指两个人合在一起,取长补短,威力无比,在二次根式中也有这种相辅相成的“对子”,如:(2+)(2-)=1,(+)(-)=3, 它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式除法可以这样解:==,==7+4.像这样通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
解决问题:
(1)4+的有理化因式是 ,将分母有理化得 ;
(2)已知x=,y=,则= ;
(3)已知实数x,y满足(x+)(y+)-2017=0,则x= ,y= .
22.振兴加工厂中甲,乙两组工人同时加工某种零件,乙组在工作中有一段时间停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如图所示.
(1)求甲组加工零件的数量y与时间x之间的函数解析式;
(2)求出图中a的值及乙组更换设备后加工零件的数量y与时间x之间的函数解析式.
23.已知如图,在中,点是边上一点,连接、,,,点是上一动点,连接.
(1)如图1,若点是的中点,,求的面积;
(2)如图2,当时,连接,求证:;
(3)如图3,以为直角边作等腰,,连接,若,,当点在运动过程中,请直接写出周长的最小值.
24.如图①,在平面直角坐标系中,点A在直线y=﹣x上,且点A的横坐标为﹣6,直线AB分别交x轴、y轴于点B和点C.点B的坐标为(10,0).
(1)求直线AB的解析式;
(2)如图②,点D坐标为(4,8),连接AD、BD,动点P从点A出发,沿线段AD运动.过点P作x轴的垂线,交AB于点Q,连接DQ.设△BDQ的面积为S(S≠0),点P的横坐标为t,求S与t之间的函数关系式;
(3)在(2)的条件下,连接PC,若∠CPD+∠OBD=90°,求t的值.
25.如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接,且
①求证:与互相平分;
②求证:;
(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
(3)在图3中,当,,时,求之长.
26.如图,在长方形中,,.延长到点,使,连接.动点从点出发,沿着以每秒1个单位的速度向终点运动,点运动的时间为秒.
(1)的长为 ;
(2)连接,求当为何值时,;
(3)连接,求当为何值时,是直角三角形;
(4)直接写出当为何值时,是等腰三角形.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据二次根式的性质,被开方数大于等于零,列不等式即可求解.
【详解】
解:∵x−1≥0
∴x≥1.
故选:C
【点睛】
本题考查了函数自变量的取值范围的求法,一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不为零;当函数表达式是二次根式时,被开方数为非负数.
2.A
解析:A
【分析】
根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.
【详解】
解:∵正方形小方格边长为1,
∴BC=,
AC=,
AB=,
在△ABC中,
∵BC2+AC2=32+18=50,AB2=50,
∴BC2+AC2=AB2,
∴△ABC是直角三角形.
故选:A.
【点睛】
考查了勾股定理的逆定理,解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.
3.B
解析:B
【解析】
【分析】
根据平行四边形的判定方法即可判断.
【详解】
A、根据两组对边分别平行的四边形是平行四边形,可以判定;
B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;
C、根据对角线互相平分的四边形是平行四边形,可以判定;
D、根据两组对边分别相等的四边形是平行四边形,可以判定;
故选:B.
【点睛】
本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.
4.C
解析:C
【解析】
【分析】
根据题意求出众数,中位数,平均数和方差,然后进行判断即可.
【详解】
解:A、甲的成绩的平均数=(3+7+8+8+10)=7.2(环),乙的成绩的平均数=(7+7+8+9+10)=8.2(环),所以A选项说法错误,不符合题意;
B、甲的成绩的中位数为8环.乙的成绩的中位数为8环,所以B选项说法错误,不符合题意;
C、甲的成绩的众数为8环,乙的成绩的众数为7环;所以C选项说法正确,符合题意;
D、,,所以D选项说法错误,不符合题意.
故选C.
【点睛】
本题主要考查了平均数,众数,中位数和方差,解题的关键在于能够熟练掌握相关知识进行求解.
5.B
解析:B
【分析】
①由勾股定理求出斜边c=13,故①正确;②由勾股定理求出b=,故②错误;③由勾股定理求出a=,故③正确;即可求解.
【详解】
解:①∵a=12,b=5,
∴,故①正确;
②∵a=3,c=4,
∴故②错误;
③∵c=10,b=9,
∴,故③正确;
故选:B.
【点睛】
本题考查了勾股定理,由勾股定理求出第三边的长是解题的关键.
6.B
解析:B
【解析】
【分析】
根据折叠的性质可得出∠DBC=22.5°,△DEC和△DEC'均是等腰直角三角形,结合选项所述即可判断出正确与否.
【详解】
(1)由折叠的性质得,∠BDC′=22.5°,∠C′DE=∠CDE=45°,
∴DC′不平分∠BDE故①错误;
(2)由折叠性质可得DE=AD=EC=EC′=a,AC=AB=BE=a+b
∴BC=EB+EC=a+b+a=2a+b,故②正确;
(3)∵∠ABC=2∠DBC,
∴∠DBC=22.5°,∠DC′C=∠DCB=45°=∠DBC′+∠BDC′,
∴∠DBC′=∠BDC′=22.5°,
∴BC′=DC′,故③正确;
(4)由折叠的性质可得出△DEC和△DEC'均是等腰直角三角形,
又∵BC′=DC′,
∴△CED的周长=CE+DE+CD=CE+C′E+BC′=BC,故④正确.
综上可得②③④正确,共三个.
故选:B.
【点睛】
本题考查了折叠的性质,注意掌握折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,难度一般.
7.B
解析:B
【解析】
【分析】
根据中位线的性质求得,再根据直角三角形的性质求得,即可求解.
【详解】
解:在矩形ABCD中,,
由勾股定理得
∵O是AC的中点,M是AD的中点
∴为的中位线,,
∴
四边形ABOM的周长为
故选B
【点睛】
此题考查矩形的性质,勾股定理,中位线的性质以及直角三角形的性质,熟练掌握相关基本性质是解题的关键.
8.B
解析:B
【分析】
如图,连接PM,PN,设AF交EM于J,连接PJ.证明四边形PMJN是矩形,推出MN=PJ,求出PJ的最小值即可解决问题.
【详解】
解:如图,连接PM,PN,设AF交EM于J,连接PJ.
∵PO=PE,OM=ME,
∴PM⊥OE,∠OPM=∠EPM,
∵PF=PA,NF=NA,
∴PN⊥AF,∠APN=∠FPN,
∴∠MPN=∠EPM+∠FPN=(∠OPF+∠FPA)=90°,∠PMJ=∠PNJ=90°,
∴四边形PMJN是矩形,
∴MN=PJ,
∴当JP⊥OA时,PJ的值最小此时MN的值最小,
∵AF⊥OM,A(5,0),直线OM的解析式为y=x
∴设直线AF的解析式为y=x+b
∵直线AF过A(5,0),
∴=0,
∴b=,
∴y=,
由,解得
∴
∴PJ的最小值为=2.4
即MN的最小值为2.4
故选:B.
【点睛】
本题考查一次函数的应用,矩形的判定和性质,垂线段最短等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.
二、填空题
9.
【解析】
【分析】
根据二次根式成立的条件可直接进行求解.
【详解】
解:由题意得:
,解得:;
故答案为.
【点睛】
本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.
10.A
解析:96
【解析】
【分析】
根据菱形的性质可得AC⊥BD,然后利用勾股定理求出OB=8cm,得出BD=16cm,最后根据菱形的面积公式求解.
【详解】
∵四边形ABCD为菱形,
∴AC⊥BD,OA=OC=AC=6cm,OB=OD,
∴OB===8(cm),
∴BD=2OB=16cm,
S菱形ABCD=AC•BD=×12×16=96(cm2).
故答案为:96.
【点睛】
本题考查了菱形的性质以及勾股定理,解答本题的关键是掌握菱形的两条对角线互相垂直的性质.
11.D
解析:cm
【解析】
【分析】
作DE⊥AB于E,根据勾股定理求出AB,证明△ACD≌△AED,根据全等三角形的性质得到CD=ED,AE=AC=9,根据角平分线的性质、勾股定理列式计算即可.
【详解】
解:作DE⊥AB于E,
由勾股定理得,AB===15,
在△ACD和△AED中,
,
∴△ACD≌△AED(AAS)
∴CD=ED,AE=AC=9,
∴BE=AB﹣AE=6,
在Rt△BED中,BD2=DE2+BE2,即BD2=(12﹣BD)2+62,
解得,BD=,
故答案为:cm.
【点睛】
此题考查的是勾股定理和全等三角形的判定及性质,掌握利用勾股定理解直角三角形和全等三角形的判定及性质是解决此题的关键.
12.A
解析:2:1
【分析】
如图所示,先根据∠AOD=120°,得到∠AOB=60°,从而证明三角形ABO是等边三角形,即可得到AB=AO,由此求解即可.
【详解】
解:如图所示,四边形ABCD是矩形,∠BOC=∠AOD=120°,
∴AO=OB,∠AOB=180°-∠AOD=60°,AC=2AO,
∴△ABO是等边三角形,
∴AB=AO,
∴AC=2AB,
∴AC:AB=2:1,
故答案为:2:1.
【点睛】
本题主要考查了矩形的性质,等边三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
13.B
解析:
【分析】
分别把B点和A点坐标代入y=kx(k≠0)可计算出对应的k的值,从而得到k的取值范围.
【详解】
解:∵直线y=kx(k≠0)与线段AB有交点,
∴当直线y=kx(k≠0)过B(-1,2)时,k值最小,则有-k=2,解得k=-2,
当直线y=kx(k≠0)过A(-3,2)时,k值最大,则-3k=2,解得k=,
∴k的取值范围为
故答案为:
【点睛】
本题考查了一次函数的应用和性质,解题的关键是运用数形结合的思想进行转化解题.
14.C
解析:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等(写出一个即可).
【分析】
根据邻边相等的平行四边形是菱形或对角线互相垂直的平行四边形是菱形进而判断即可.
【详解】
解:根据题意可得出:四边形CBFE是平行四边形,
当CB=BF时,平行四边形CBFE是菱形,
当CB=BF;BE⊥CF;∠EBF=60°;BD=BF时,都可以得出四边形CBFE为菱形.
故答案为:如:CB=BF;BE⊥CF;∠EBF=60°;BD=BF等.
【点睛】
此题主要考查了菱形的判定,关键是熟练掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.
15.50
【分析】
根据总路程÷回家用的时间即可求解.
【详解】
解:小明回家用了15-5=10分钟,
总路程为500,
故小明回家的速度为:500÷10=50(米/分),
故答案为50.
【点睛】
本
解析:50
【分析】
根据总路程÷回家用的时间即可求解.
【详解】
解:小明回家用了15-5=10分钟,
总路程为500,
故小明回家的速度为:500÷10=50(米/分),
故答案为50.
【点睛】
本题考查由图象理解对应函数关系及其实际意义,应把所有可能出现的情况考虑清楚.
16.【分析】
由为矩形,得到为直角,且三角形与三角形全等,利用全等三角形对应角、对应边相等得到,,,利用勾股定理求出的长,由求出的长,在中,设,表示出,利用勾股定理列出关于x的方程,求出方程的解得到x
解析:
【分析】
由为矩形,得到为直角,且三角形与三角形全等,利用全等三角形对应角、对应边相等得到,,,利用勾股定理求出的长,由求出的长,在中,设,表示出,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出的长.
【详解】
解:∵矩形,
∴,
由折叠可得,
∴,,,
在中,,,
根据勾股定理得:,即,
设,则有,
根据勾股定理得:,
解得:,则.
故答案为:.
【点睛】
此题考查了翻折变换,矩形的性质,以及勾股定理,熟练掌握定理及性质是解本题的关键.
三、解答题
17.(1);(2)
【分析】
(1)先化成最简二次根式,最后合并同类二次根式即可;
(2)按照二次根式乘除法运算即可.
【详解】
(1)
=
=;
(2)
=
=.
【点睛】
本题考查了二次根式的化简,
解析:(1);(2)
【分析】
(1)先化成最简二次根式,最后合并同类二次根式即可;
(2)按照二次根式乘除法运算即可.
【详解】
(1)
=
=;
(2)
=
=.
【点睛】
本题考查了二次根式的化简,合并同类二次根式,二次根式的乘除法,熟练掌握性质,灵活进行化简计算是解题的关键.
18.(1)计算见解析;(2)台风影响该海港持续的时间为7小时
【分析】
(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;
(2)利用勾股
解析:(1)计算见解析;(2)台风影响该海港持续的时间为7小时
【分析】
(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;
(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.
【详解】
解:(1)如图,过点C作于点D
∵
∴
∴是直角三角形
∴
∴
∴
∵以台风中心为圆心周围以内为受影响区域
∴海港C会受台风影响;
(2)当时,
台风在上运动期间会影响海港C
在中
在中
∴
∵台风的速度为20千米/小时
∴(小时)
答:台风影响该海港持续的时间为7小时.
【点睛】
本题考查了勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.
19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).
【解析】
【分析】
(1)直接利用勾股定理求出AB的长度即可;
(2)①根据三角形ABC的面积画
解析:(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).
【解析】
【分析】
(1)直接利用勾股定理求出AB的长度即可;
(2)①根据三角形ABC的面积画出对应的三角形即可;
②根据点C的位置,写出点C的坐标即可.
【详解】
解:(1)如图所示
在Rt△ACB中,∠P=90°,AP=3,BP=3
∴
(2)①如图所示
Rt△ACB中,∠C=90°,AC=3,BC=3
∴
②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).
满足条件的三角形如图所示.
C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).
【点睛】
本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.
20.(1)见解析;(2)
【分析】
(1)先根据已知条件,证明四边形DBCE是平行四边形,可得EC∥AB,且EC=DB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相
解析:(1)见解析;(2)
【分析】
(1)先根据已知条件,证明四边形DBCE是平行四边形,可得EC∥AB,且EC=DB,根据直角三角形斜边上的中线等于斜边的一半可得,则可得四边形是平行四边形,根据邻边相等的平行四边形是菱形即可得证;
(2)根据已知条件可得是等边三角形,进而求得,根据,进而根据菱形的性质求得面积.
【详解】
(1)证明:∵DE∥BC,EC∥AB,
∴四边形DBCE是平行四边形.
∴EC∥AB,且EC=DB.
在Rt△ABC中,CD为AB边上的中线,
∴AD=DB=CD.
∴EC=AD.
四边形ADCE是平行四边形
∴四边形ADCE是菱形.
(2)解:Rt△ABC中,CD为AB边上的中线,∠B=60°,BC=6,
是等边三角形
∴AD=DB=CD=6.
∴AB=12,由勾股定理得.
∵四边形DBCE是平行四边形,
∴DE=BC=6.
∴菱形.
【点睛】
本题考查了菱形的性质与判定,直角三角形斜边上的中线等于斜边的一半,勾股定理,等边三角形的性质与判定,掌握以上知识是解题的关键.
21.(1),;(2)10 ;(3),.
【解析】
【详解】
(1) ∵,∴ 的有理化因式为 ;
∵,∴ 分母有理化得: .
(2). ∵ ,
∴
(3) ∵(x+)(y+)-2017=0
∴,
∴
解析:(1),;(2)10 ;(3),.
【解析】
【详解】
(1) ∵,∴ 的有理化因式为 ;
∵,∴ 分母有理化得: .
(2). ∵ ,
∴
(3) ∵(x+)(y+)-2017=0
∴,
∴
∴
∴ ,
整理得:
∴ ,x=y
将x=y代入可得:, .故答案为,.
点睛:此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解本题的关键.
22.(1)y=70x;(2)a=320,y=100x﹣280
【分析】
(1)利用待定系数法求一次函数解析式即可;
(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度即可.
【详解】
解:(1)∵
解析:(1)y=70x;(2)a=320,y=100x﹣280
【分析】
(1)利用待定系数法求一次函数解析式即可;
(2)利用乙的原来加工速度得出更换设备后,乙组的工作速度即可.
【详解】
解:(1)∵图象经过原点及(6,420),
∴设解析式为:y=kx,
∴6k=420,
解得:k=70,
∴y=70x;
(2)乙3小时加工120件,
∴乙的加工速度是:每小时40件,
∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2.5倍.
∴更换设备后,乙组的工作速度是:每小时加工40×2.5=100(件),
a=120+100×(6﹣4)=320;
乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为:y=120+100(x﹣4)=100x﹣280.
【点睛】
本题考查了一次函数的应用,解题的关键是根据题意得出函数关系式以及数形结合.
23.(1);(2)证明见解析;(3)
【分析】
(1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行四边形的面积;
(2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得:
(3)
解析:(1);(2)证明见解析;(3)
【分析】
(1)先利用等腰直角三角形的性质求解 再求解的面积,从而可得平行四边形的面积;
(2)如图,延长交于点 先证明再证明 再结合平行四边形的性质可得:
(3)如图,过作,交的延长线于 过作 交于 先证明在上运动,作关于的对称点,连接,交于
确定三角形周长最小时的位置,再过作于 分别求解 再利用勾股定理求解即可.
【详解】
解:(1)是的中点,
设
解得: (负根舍去)
,
(2)如图,延长交于点
在中,
(3)如图,过作,交的延长线于 过作 交于
等腰直角三角形
在上运动,
如图,作关于的对称点,连接,交于
此时周长最短,
过作于
由(2)得: 而
由(2)得: 是等腰直角三角形,
即的周长的最小值是
【点睛】
本题考查的是全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,平行四边形的性质,轴对称的性质,动点的轨迹,灵活应用以上知识是解题的关键.
24.(1)y=﹣x+5;(2)S=﹣t+25;(3)t=﹣4
【解析】
【分析】
(1)因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求
解析:(1)y=﹣x+5;(2)S=﹣t+25;(3)t=﹣4
【解析】
【分析】
(1)因为A点在直线上,且横坐标为-6,可求得A点坐标,设直线AB的解析式为y=kx+b,将A、B两点的坐标代入,即可求得直线AB的解析式;
(2)根据已知条件得到四边形OADB是平行四边形,过A作x轴的垂线,垂足为E,过P作x轴的垂线,垂足为F,交AB与点Q,连接OQ,求得E(﹣6,0),推出四边形OADB是菱形,且可证≌,故=,求得Q(t,),根据三角形的面积公式即可得到结论;
(3)设AD交y轴于F,连接CD,可证≌,根据全等三角形的性质得到∠AOC=∠ACD,求得∠CPD=∠ADC,再证≌,可得PF=DF,故t的值可得.
【详解】
解:(1)∵点A在直线,且点A的横坐标为-6,将x=-6代入,求得y=8,
∴A点坐标为(﹣6,8),且由题意可知B点坐标(10,0),
设直线AB的解析式为y=kx+b,
∴,解得:,
∴直线AB的解析式为:;
(2)∵D(4,8),A(﹣6,8),
∴AD=10,且AD∥OB,
又∵B(10,0),O(0,0),故OB=10,
∴四边形OADB是平行四边形(对边平行且相等),
如图②,过A作x轴的垂线,垂足为E,过P作x轴的垂线,交AB与点Q,垂足为F,连接OQ,
∵A(-6,8),故E(-6,0),
∴AE=8,OE=6,
∴根据勾股定理,可得,
∴OA=AD,
∴四边形OADB是菱形(邻边相等的平行四边形是菱形),故BO=BD,菱形对角线平分每组对角,故∠QBD=∠QBF,
在和中,
∴≌(SAS),
∴=,
∵点P的横坐标为t,∴点Q的横坐标为t,
∵直线AB的解析式为;
∴Q(t,),
∴QF=,
∴===,
∴;
(3)在(2)的条件下,四边形OADB是菱形,如图③,设AD交y轴于F,连接CD,
在和中,
∴≌(SAS),
∴∠AOC=∠ADC,
∵∠OAD+∠AOC=90°,∠OAD=∠OBD,
∴∠OBD+∠AOC=90°,
∵∠CPD+∠OBD=90°,
∴∠CPD=∠AOC,
∴∠CPD=∠ADC,
又∵AD⊥y轴,
∴∠CFP=∠CFD=90°,
在和中,
∴≌(AAS),
∴PF=DF,
∵D(4,8),
∴P(-4,8),
∴t=-4.
【点睛】
本题主要考察了求一次函数解析式、菱形的性质、勾股定理、全等三角形的证明及应用、动点问题与函数的结合,该题融合了较多知识点,解题的关键在于找出全等三角形,并应用全等的性质去计算.
25.(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形
解析:(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.
【详解】
(1)证明:①连接ED、BF,
∵BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
∴BD、EF互相平分;
②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
∵EF⊥BE,
∴∠BEF=90°.
在Rt△BEO中,BE2+OE2=OB2.
∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.
在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.
∴(BE+DF)2+EF2=2AB2;
(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,
理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.
∵BE∥DF,EF⊥BE,
∴EF⊥DF,
∴四边形EFDM是矩形,
∴EM=DF,DM=EF,∠BMD=90°,
在Rt△BDM中,BM2+DM2=BD2,
∴(BE+EM)2+DM2=BD2.
即(BE+DF)2+EF2=2AB2;
(3)解:过P作PE⊥PD,过B作BE⊥PE于E,
则由上述结论知,(BE+PD)2+PE2=2AB2.
∵∠DPB=135°,
∴∠BPE=45°,
∴∠PBE=45°,
∴BE=PE.
∴△PBE是等腰直角三角形,
∴BP=BE,
∵BP+2PD=4 ,
∴2BE+2PD=4,即BE+PD=2,
∵AB=4,
∴(2)2+PE2=2×42,
解得,PE=2,
∴BE=2,
∴PD=2﹣2.
【点睛】
本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
26.(1)5;(2)秒时,ΔABP≅ΔDCE;(3)当秒或秒时,ΔPDE是直角三角形;(4)当秒或秒或秒时,ΔPDE为等腰三角形.
【分析】
(1)根据长方形的性质及勾股定理直接求解即可;
(2)根据全
解析:(1)5;(2)秒时,;(3)当秒或秒时,是直角三角形;(4)当秒或秒或秒时,为等腰三角形.
【分析】
(1)根据长方形的性质及勾股定理直接求解即可;
(2)根据全等三角形的性质可得:,即可求出时间t;
(3)分两种情况讨论:①当时,在两个直角三角形中运用两次勾股定理,然后建立等量关系求解即可;②当时,此时点P与点C重合,得出,即可计算t的值;
(4)分三种情况讨论:①当时,②当时,③当时,分别结合图形,利用各边之间的关系及勾股定理求解即可得.
【详解】
解:(1)∵四边形ABCD为长方形,
∴,,
在中,
,
故答案为:5;
(2)如图所示:当点P到如图所示位置时,,
∵,,
∴,仅有如图所示一种情况,
此时,,
∴,
∴秒时,;
(3)①当时,如图所示:
在中,
,
在中,
,
∴,
,,
∴,
解得:;
②当时,此时点P与点C重合,
∴,
∴;
综上可得:当秒或秒时,是直角三角形;
(4)若为等腰三角形,分三种情况讨论:
①当时,如图所示:
∵,,
∴,
∴,
∴;
②当时,如图所示:
,
∴;
③当时,如图所示:
,
∴,
在中,
,
即,
解得:,
,
∴;
综上可得:当秒或秒或秒时,为等腰三角形.
【点睛】
题目主要考查勾股定理解三角形,等腰三角形的性质,全等三角形的性质等,理解题意,分类讨论作出相应图形是解题关键.
展开阅读全文