收藏 分销(赏)

初二数学上册压轴题试题附解析(一).doc

上传人:天**** 文档编号:1849559 上传时间:2024-05-10 格式:DOC 页数:18 大小:517.54KB
下载 相关 举报
初二数学上册压轴题试题附解析(一).doc_第1页
第1页 / 共18页
初二数学上册压轴题试题附解析(一).doc_第2页
第2页 / 共18页
初二数学上册压轴题试题附解析(一).doc_第3页
第3页 / 共18页
初二数学上册压轴题试题附解析(一).doc_第4页
第4页 / 共18页
初二数学上册压轴题试题附解析(一).doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、初二数学上册压轴题试题附解析(一)1操作发现:如图1,D是等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF,易证AF=BD(不需要证明);类比猜想:如图2,当动点D运动至等边ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。深入探究:如图3,当动点D在等边ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF,连接AF,BF你能发现AF,BF与AB有何数量关系,并证明你发现的结论。如图4,当动点D运动至等边ABC边BA的延长线上时,其它作法与图3相同,

2、猜想AF,BF与AB在上题中的结论是否仍然成立,若不成立,请给出你的结论并证明。2如图1,在平面直角坐标系中,AOAB,BAO90,BO8cm,动点D从原点O出发沿x轴正方向以acm/s的速度运动,动点E也同时从原点O出发在y轴上以bcm/s的速度运动,且a,b满足关系式a2+b24a2b+50,连接OD,OE,设运动的时间为t秒(1)求a,b的值;(2)当t为何值时,BADOAE;(3)如图2,在第一象限存在点P,使AOP30,APO15,求ABP3如图,ACB和DCE均为等腰三角形,点A,D,E在同一直线上,连接BE(1)如图1,若CABCBACDECED50求证:ADBE;求AEB的度数

3、(2)如图2,若ACBDCE90,CF为DCE中DE边上的高,试猜想AE,CF,BE之间的关系,并证明你的结论4完全平方公式:适当的变形,可以解决很多的数学问题例如:若,求的值解:因为所以所以得根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;若则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积5在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a8b+200(1)求a,b的值;(2)点P在直线AB的右侧;且APB45,若点P在x轴上(图1),则点P的坐标为 ;若ABP为直角三角

4、形,求P点的坐标6在平面直角坐标系中,点A在x轴的负半轴上,点B在y轴的正半轴上,点A与点C关于y轴对称(1)如图1,OA=OB,AF平分BAC交BC于F,BEAF交AC于E,请直接写出EF与EC的数量关系为 ;(2)如图2,AF平分BAC交BC于F,若AF=2OB,求ABC的度数;(3)如图3,OA=OB,点G在BO的垂直平分线上,作GOH=45交BA的延长线于H,连接GH,试探究OG与GH的数量和位置关系7背景角的平分线是常见的几何模型,利用轴对称构造三角形全等可解决有关问题问题在四边形ABDE中,C是BD边的中点(1)如图1,若AC平分BAE,ACE90,则线段AE、AB、DE的长度满足

5、的数量关系为_;(直接写出答案)(2)如图2,AC平分BAE,EC平分AED,若ACE120,则线段AB、BD、DE、AE的长度满足怎样的数量关系?写出结论并证明;(3)如图3,若ACE120,AB4,DE9,BD12,则AE的最大值是_(直接写出答案)8已知:为的中线,分别以和为一边在的外部作等腰三角形和等腰三角形,且,连接,(1)如图1,若,求的度数(2)如图1,求证:(3)如图2,设交于点,交于点与交于点,若点为中点,且,请探究和的数量关系,并直接写出答案(不需要证明)【参考答案】2成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通

6、过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=解析:成立,证明见详解;AF+BF=AB,证明见详解;不成立,AF=AB+BF,证明见详解.【分析】类比猜想:通过证明BCDACF,即可证明AF=BD;深入探究:AF+BF=AB,利用全等三角形BCDACF(SAS)的对应边BD=AF;同理BCFACD(SAS),则BF=AD,所以AF+BF=AB;结论不成立新的结论是AF=AB+BF;通过证明BCFACD(SAS),则BF=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF【详解】解:类比猜想:如图2中,ABC是等边三角形(已知),BC=AC,BCA=60

7、(等边三角形的性质);同理知,DC=CF,DCF=60;BCA+DCA=DCF+DCA,即BCD=ACF;在BCD和ACF中, BCDACF(SAS),BD=AF(全等三角形的对应边相等);深入探究:如图示AF+BF=AB;证明如下:由条件可知:BCA-DCA=DCF-DCA,即BCD=ACF,同理可证BCDACF(SAS),则BD=AF;同理BCFACD(SAS),则BF=AD,AF+BF=BD+AD=AB;结论不成立新的结论是AF=AB+BF;如图示:证明如下:等边DCF和等边DCF,由同理可知:在BCF和ACD中, BCFACD(SAS),BF=AD(全等三角形的对应边相等);又由知,A

8、F=BD;AF=BD=AB+AD=AB+BF,即AF=AB+BF【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.3(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;解析:(1)a2,b1;(2)t或t8;(3)ABP105【分析】(1)将a2+b24a2b+50用配方法得出(a2)2+(b1)20,利用非负数的性质,即可得出结论;(2)先由运动得出BD|82t|,再由全等三角形的性质的出货BDOE,建立方程求

9、解即可得出结论(3)先判断出OAPBAQ(SAS),得出OPBQ,ABQAOP30,AQBAPO15,再求出OAP135,进而判断出OAQBAQ(SAS),得出OQABQA15,OQBQ,再判断出OPQ是等边三角形,得出OQP60,进而求出BQP30,再求出PBQ75,即可得出结论【详解】解:(1)a2+b24a2b+50,(a2)2+(b1)20,a20,b10,a2,b1;(2)由(1)知,a2,b1,由运动知,OD2t,OEt,OB8,DB|82t|BADOAE,DBOE,|82t|t,解得,t(如图1)或t8(如图2);(3)如图3,过点A作AQAP,使AQAP,连接OQ,BQ,PQ,

10、则APQ45,PAQ90,OAB90,PAQOAB,OAB+BAPPAQ+BAP,即:OAPBAQ,OAAB,ADAD,OAPBAQ(SAS),OPBQ,ABQAOP30,AQBAPO15,在AOP中,AOP30,APO15,OAP180AOPAPO135,OAQ360OAPPAQ13590135OAP,OAAB,ADAD,OAQBAQ(SAS),OQABQA15,OQBQ,OPBQ,OQOP,APQ45,APO15,OPQAPO+APQ60,OPQ是等边三角形,OQP60,BQPOQPOQABQA60151530,BQPQ,PBQ(180BQP)75,ABPABQ+PBQ30+75105【点

11、睛】本题是三角形综合题,主要考查了配方法、非负数的性质、三角形内角和定理、等边三角形的判定和性质、全等三角形的判定及性质,构造出全等三角形是解题的关键4(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全解析:(1)见解析;80;(2)AE2CF+BE,理由见解析【分析】(1)通过角的计算找出ACD=BCE,再结合ACB和DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出ACDBCE,由此即可得出结论AD=BE;结合中的ACDBCE

12、可得出ADC=BEC,再通过角的计算即可算出AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论【详解】(1)证明:CABCBACDECED50,ACBDCE18025080,ACBACD+DCB,DCEDCB+BCE,ACDBCE,ACB,DCE都是等腰三角形,ACBC,DCEC,在ACD和BCE中,ACDBCE(SAS),ADBE解:ACDBCE,ADCBEC,点A、D、E在同一直线上,且CDE50,ADC180CDE130,BEC130,BECCED+AEB,CED50,AEBBE

13、CCED80(2)结论:AE2CF+BE理由:ACB,DCE都是等腰直角三角形,CDECED45,CFDE,CFD90,DFEFCF,ADBE,AEAD+DEBE+2CF【点睛】本题主要考查等腰三角形的性质以及三角形全等的证明,正确理解等腰三角形的性质以及三角形全等的证明是本题的解题关键5(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边平方,再将代入计算;两边平方,再将代入计算;(3)由题意可得:,两边平方从而解析:(1)12;(2)6;17;(3)【分析】(1)根据完全平方公式的变形应用,解决问题;(2)两边平方,再将代入计算;两边平方,再将代

14、入计算;(3)由题意可得:,两边平方从而得到,即可算出结果【详解】解:(1);又;,(2),;又,由,;又,(3)由题意可得,;,;,;图中阴影部分面积为直角三角形面积,【点睛】本题主要考查了完全平方公式的适当变形灵活应用,(1)可直接应用公式变形解决问题(2)小题都需要根据题意得出两个因式和或者差的结果,合并同类项得,是解决本题的关键,再根据完全平方公式变形应用得出答案(3)根据几何图形可知选段,再根据两个正方形面积和为18,利用完全平方公式变形应用得到,再根据直角三角形面积公式得出答案6(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问

15、题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:解析:(1)a2,b4;(2)(4,0);P点坐标为(4,2),(2,2)【分析】(1)利用非负数的性质解决问题即可(2)根据等腰直角三角形的性质即可解决问题分两种情形:如图2中,若ABP=90,过点P作PCOB,垂足为C如图3中,若BAP=90,过点P作PDOA,垂足为D分别利用全等三角形的性质解决问题即可【详解】(1)a2+4a+4+b28b+160(a+2)2+(b4)20a2,b4(2)如图1中,APB45,POB90,OPOB4,P(4,0)故答案为(4,0)a2,b4OA2OB4又ABP为直角三角形,APB45只有两种情况

16、,ABP90或BAP90如图2中,若ABP90,过点P作PCOB,垂足为CPCBBOA90,又APB45,BAPAPB45,BABP,又ABO+OBPOBP+BPC90,ABOBPC,ABOBPC(AAS),PCOB4,BCOA2,OCOBBC422,P(4,2)如图3中,若BAP90,过点P作PDOA,垂足为DPDAAOB90,又APB45,ABPAPB45,APAB,又BAD+DAP90,DPA+DAP90,BADDPA,BAOAPP(AAS),PDOA2,ADOB4,ODAD0A422,P(2,2)综上述,P点坐标为(4,2),(2,2)【点睛】本题属于三角形综合题,考查了等腰直角三角形

17、的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题7(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取解析:(1)EFEC(2)72(3)GHGO,GHGO【分析】(1)如图1中,设AF交BE于点J首先证明AB=AE,再证明AEF=ABF=90,可得结论;(2)如图2中,取CF的中点T,连接OT由OA=OC,BOAC,推出BA=BC,推出BAC=BCA,ABO=CBO,设BAC=BCA=2,利用三角形内

18、角和定理,构建方程求解即可;(3)结论:OG=GH,OGGH如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW证明GOH=GOH=45,推出点H与点H重合,可得结论(1)解:(1)结论:EF=EC理由:如图1中,设AF交BE于点JAF平分BAC,BAF=CAF,BEAF,BAF+ABE=90,CAF+AEB=90,ABE=AEB,AB=AE,A,C关于y轴对称,OA=OC,OA=OB,OA=OB=OC,OAB=OBA=45,OCB=OBC=45,ABC=90,在ABF和AEF中,ABFAEF(SAS),AEF=ABF=90,CEF=90,

19、ECF=EFC=45,EF=EC;(2)解:如图2中,取CF的中点T,连接OTAO=OC,FT=TC,OTAF,OT=AF,AF=2OB,OB=OT,OBT=OTB,OA=OC,BOAC,BA=BC,BAC=BCA,ABO=CBO,设BAC=BCA=2,AF平分BAC,BAF=CAF=,OTAF,TOC=CAF=,OBT=OTB=TOC+TCO=3,OBC+OCB=90,5=90,=18,OBC=36,ABC=2OBC=72;(3)解:结论:OG=GH,OGGH理由:如图3中,连接GB,在BA上取一点H,使得GB=GH,连接OH,设AB交DG于点W,交OG于点K,连接OW设OGB=m,OGH=

20、n,GD垂直平分线段OB,GB=GO,DGB=DGO=m,GB=GO=GH,GHO=(180-n)=90-n,GHB=(180-m-n)=90-m-n,KHO=GHO-GHB=90-n-(90-m-n)=m,KHO=KGW,GKW=HKO,HOK=GWK,DGOA,GWK=OAB=45,COH=45,COH=45,COH=COH,点H与点H重合,OG=GH,GHO=GOH=45,OGH=90,GH=GO,GHGO【点睛】本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,等腰三角形的性质等知识,第三个问题比较难,采用了同一法解决问题8(1)AE=AB+DE(2)AE=AB+DE+BD

21、(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出解析:(1)AE=AB+DE(2)AE=AB+DE+BD(3)【分析】(1)在AE上取一点F,使AF=AB,及可以得出ACBACF,就可以得出BC=FC,ACB=ACF,就可以得出CEFCED就可以得出结论;(3)在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CG可以求得CF=CG,CFG是等边三角形,就有FG=CG=BD,进而得出结论;(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG根据两点之间线段最短解决

22、问题即可(1)AE=AB+DE;理由:在AE上取一点F,使AF=AB,AC平分BAE,BAC=FAC在ACB和ACF中,ACBACF(SAS),BC=FC,ACB=ACFC是BD边的中点BC=CD,CF=CDACE=90,ACB+DCE=90,ACF+ECF=90ECF=ECD在CEF和CED中,CEFCED(SAS),EF=EDAE=AF+EF,AE=AB+DE,故答案为:AE=AB+DE;(2)猜想:AE=AB+DE+BD证明:在AE上取点F,使AF=AB,连接CF,在AE上取点G,使EG=ED,连接CGC是BD边的中点,CB=CD=BDAC平分BAE,BAC=FAC在ACB和ACF中,

23、ACBACF(SAS),CF=CB,BCA=FCA同理可证:CD=CG,DCE=GCECB=CD,CG=CFACE=120,BCA+DCE=180-120=60FCA+GCE=60FCG=60FGC是等边三角形FG=FC=BDAE=AF+EG+FGAE=AB+DE+BD(3)作B关于AC的对称点F,D关于EC的对称点G,连接AF,FC,CG,EG,FG,如图所示:C是BD边的中点,CB=CD=BD=,ACBACF(SAS),CF=CB=,BCA=FCA,同理可证:CD=CG=,DCE=GCE,CB=CD,CG=CF,ACE=120,BCA+DCE=180-120=60,FCA+GCE=60,F

24、CG=60,FGC是等边三角形,FC=CG=FG=,AEAF+FG+EG,当A、F、G、E共线时AE的值最大,最大值为故答案为:【点睛】本题考查了四边形的综合题,角平分线的性质的运用,全等三角形的判定及性质的运用,等边三角形的性质的运用,勾股定理的运用,解答时证明三角形全等是关键9(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至H,使DH=AD,连接BH,想办法证解析:(1)BAC=50;(2)见解析;(3)【分析】(1)利用三角形内角和定理求出EAB和CAF,再根据构建方程即可解决问题;(2)延长AD至

25、H,使DH=AD,连接BH,想办法证明ABHEAF即可解决问题;(3)先证明ACDFAG,推出ACD=FAG,再证明BCF=150即可(1)AE=AB,AEB=ABE=65,EAB=50,AC=AF,ACF=AFC=75,CAF=30,EAF+BAC=180,EAB+2ABC+FAC=180,50+2BAC+30=180,BAC=50(2)证明:延长AD至H,使DH=AD,连接BH,EF=2AD,AH=EF,在BDH和CDA中,BDHCDA,HB=AC=AF,BHD=CAD,ACBH,ABH+BAC=180,EAF+BAC=180,EAF=ABH,在ABH和EAF中,ABHEAF,AEF=AB

26、H,EF=AH=2AD,(3)结论:GAF-CAF=60由(1)得,AD=EF,又点G为EF中点,EG=AD,在EAG和ABD中,EAGABD,EAG=ABC=60,AEB是等边三角形,ABE=60,CBM=60,在ACD和FAG中,ACDFAG,ACD=FAG,AC=AF,ACF=AFC,在四边形ABCF中,ABC+BCF+CFA+BAF=360,60+2BCF=360,BCF=150,BCA+ACF=150,GAF+(180-CAF)=150,GAF-CAF=60.【点睛】本题考查三角形综合题,涉及全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服