资源描述
2024年人教版中学七7年级下册数学期末解答题压轴题含答案(1)
一、解答题
1.如图,用两个面积为的小正方形拼成一个大的正方形.
(1)则大正方形的边长是___________;
(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为?
2.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
3.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)
4.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?
5.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二、解答题
6.如图,,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,.
(1)= ;
(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;
(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,,且,求n的值.
7.已知点C在射线OA上.
(1)如图①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度数;
(2)在①中,将射线OE沿射线OB平移得O′E'(如图②),若∠AOB=α,探究∠OCD与∠BO′E′的关系(用含α的代数式表示)
(3)在②中,过点O′作OB的垂线,与∠OCD的平分线交于点P(如图③),若∠CPO′=90°,探究∠AOB与∠BO′E′的关系.
8.已知直线,点P为直线、所确定的平面内的一点.
(1)如图1,直接写出、、之间的数量关系 ;
(2)如图2,写出、、之间的数量关系,并证明;
(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,,求的度数.
9.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
10.如图,已知,是的平分线.
(1)若平分,求的度数;
(2)若在的内部,且于,求证:平分;
(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围.
三、解答题
11.如图1,点O在上,,射线交于点C,已知m,n满足:.
(1)试说明//的理由;
(2)如图2,平分,平分,直线、交于点E,则______;
(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论.
12.已知:三角形ABC和三角形DEF位于直线MN的两侧中,直线MN经过点C,且,其中,,,点E、F均落在直线MN上.
(1)如图1,当点C与点E重合时,求证:;聪明的小丽过点C作,并利用这条辅助线解决了问题.请你根据小丽的思考,写出解决这一问题的过程.
(2)将三角形DEF沿着NM的方向平移,如图2,求证:;
(3)将三角形DEF沿着NM的方向平移,使得点E移动到点,画出平移后的三角形DEF,并回答问题,若,则________.(用含的代数式表示)
13.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为 度;
(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
14.如图,已知是直线间的一点,于点交于点.
(1)求的度数;
(2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒.
①当时,求的度数;
②当时,求t的值.
15.如图1,,E是、之间的一点.
(1)判定,与之间的数量关系,并证明你的结论;
(2)如图2,若、的两条平分线交于点F.直接写出与之间的数量关系;
(3)将图2中的射线沿翻折交于点G得图3,若的余角等于的补角,求的大小.
四、解答题
16.模型与应用.
(模型)
(1)如图①,已知AB∥CD,求证∠1+∠MEN+∠2=360°.
(应用)
(2)如图②,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .
如图③,已知AB∥CD,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度数为 .
(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CMnMn-1的角平分线MnO交于点O,若∠M1OMn=m°.
在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)
17.直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是∠BAP和∠ABM角的平分线,
(1)点A、B在运动的过程中,∠ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的大小.
(2)如图2,将△ABC沿直线AB折叠,若点C落在直线PQ上,则∠ABO=________,
如图3,将△ABC沿直线AB折叠,若点C落在直线MN上,则∠ABO=________
(3)如图4,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其反向延长线交于E、F,则∠EAF= ;在△AEF中,如果有一个角是另一个角的倍,求∠ABO的度数.
18.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.
(1)求证:∠BED=90°;
(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;
(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: .
19.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
20.已知,,点为射线上一点.
(1)如图1,写出、、之间的数量关系并证明;
(2)如图2,当点在延长线上时,求证:;
(3)如图3,平分,交于点,交于点,且:,,,求的度数.
【参考答案】
一、解答题
1.(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析
【分析】
(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;
(2)设长方形纸片的长为,宽为,根据
解析:(1);(2)不能剪出长宽之比为5:4,且面积为的大长方形,理由详见解析
【分析】
(1)根据已知得到大正方形的面积为400,求出算术平方根即为大正方形的边长;
(2)设长方形纸片的长为,宽为,根据面积列得,求出,得到,由此判断不能裁出符合条件的大正方形.
【详解】
(1)∵用两个面积为的小正方形拼成一个大的正方形,
∴大正方形的面积为400,
∴大正方形的边长为
故答案为:20cm;
(2)设长方形纸片的长为,宽为,
,
解得:,
,
答:不能剪出长宽之比为5:4,且面积为的大长方形.
【点睛】
此题考查利用算术平方根解决实际问题,利用平方根解方程,正确理解题意是解题的关键.
2.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
3.(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3
解析:(1)正方形工料的边长是 5 分米;
(2)这块正方形工料不合格,理由见解析.
【详解】
试题分析:(1)根据正方形的面积公式求出的值即可;
(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x•2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案.
试题解析:(1)∵正方形的面积是 25 平方分米,
∴正方形工料的边长是 5 分米;
(2)设长方形的长宽分别为 3x 分米、2x 分米,
则 3x•2x=18,
x2=3,
x1= ,x2=(舍去),
3x=3>5,2x=2<5 ,
即这块正方形工料不合格.
4.不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于
解析:不同意,理由见解析.
【详解】
试题分析:设面积为300平方厘米的长方形的长宽分为3x厘米,2x厘米,则3x•2x=300,x2=50,解得x=,而面积为400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.
试题解析:解:不同意李明的说法.设长方形纸片的长为3x (x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x==,∴长方形纸片的长为 cm,∵50>49,∴>7,∴>21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.
答:李明不能用这块纸片裁出符合要求的长方形纸片.
点睛:本题考查了算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0.也考查了估算无理数的大小.
5.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二、解答题
6.(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB
解析:(1)100;(2)75°;(3)n=3.
【分析】
(1)如图:过O作OP//MN,由MN//OP//GH得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OBH=360°,即可求出∠AOB;
(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,,然后根据三角形外角的性质解答即可;
(3)设BF交MN于K,由∠NAO=116°,得∠MAO=64°,故∠MAE=,同理∠OBH=144°,∠HBF=n∠OBF,得∠FBH=,从而,又∠FKN=∠F+∠FAK,得,即可求n.
【详解】
解:(1)如图:过O作OP//MN,
∵MN//GHl
∴MN//OP//GH
∴∠NAO+∠POA=180°,∠POB+∠OBH=180°
∴∠NAO+∠AOB+∠OBH=360°
∵∠NAO=116°,∠OBH=144°
∴∠AOB=360°-116°-144°=100°;
(2)分别延长AC、CD交GH于点E、F,
∵AC平分且,
∴,
又∵MN//GH,
∴;
∵,
∵BD平分,
∴,
又∵
∴;
∴;
(3)设FB交MN于K,
∵,则;
∴
∵,
∴,,
在△FAK中,,
∴,
∴.
经检验:是原方程的根,且符合题意.
【点睛】
本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.
7.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′
【分析】
(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;
(2)
解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′
【分析】
(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;
(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;
(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.
【详解】
解:(1)∵CD∥OE,
∴∠AOE=∠OCD=120°,
∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;
(2)∠OCD+∠BO′E′=360°-α.
证明:如图②,过O点作OF∥CD,
∵CD∥O′E′,
∴OF∥O′E′,
∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,
∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,
∴∠OCD+∠BO′E′=360°-α;
(3)∠AOB=∠BO′E′.
证明:∵∠CPO′=90°,
∴PO′⊥CP,
∵PO′⊥OB,
∴CP∥OB,
∴∠PCO+∠AOB=180°,
∴2∠PCO=360°-2∠AOB,
∵CP是∠OCD的平分线,
∴∠OCD=2∠PCO=360°-2∠AOB,
∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,
∴360°-2∠AOB+∠BO′E′=360°-∠AOB,
∴∠AOB=∠BO′E′.
【点睛】
此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.
8.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360
解析:(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°
【分析】
(1)首先过点P作PQ∥AB,则易得AB∥PQ∥CD,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360°;
(2)作PQ∥AB,易得AB∥PQ∥CD,根据两直线平行,内错角相等,即可证得∠APC=∠A+∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,先证∠BEF=∠PQB=110°、∠PEG=∠FEG,∠GEH=∠BEG,根据∠PEH=∠PEG-∠GEH可得答案.
【详解】
解:(1)∠A+∠C+∠APC=360°
如图1所示,过点P作PQ∥AB,
∴∠A+∠APQ=180°,
∵AB∥CD,
∴PQ∥CD,
∴∠C+∠CPQ=180°,
∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;
(2)∠APC=∠A+∠C,
如图2,作PQ∥AB,
∴∠A=∠APQ,
∵AB∥CD,
∴PQ∥CD,
∴∠C=∠CPQ,
∵∠APC=∠APQ-∠CPQ,
∴∠APC=∠A-∠C;
(3)由(2)知,∠APC=∠PAB-∠PCD,
∵∠APC=30°,∠PAB=140°,
∴∠PCD=110°,
∵AB∥CD,
∴∠PQB=∠PCD=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵EF∥BC,
∴∠BEF=∠PQB=110°,
∵∠PEG=∠PEF,
∴∠PEG=∠FEG,
∵EH平分∠BEG,
∴∠GEH=∠BEG,
∴∠PEH=∠PEG-∠GEH
=∠FEG-∠BEG
=∠BEF
=55°.
【点睛】
此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
9.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
10.(1)90°;(2)见解析;(3)不变,180°
【分析】
(1)根据邻补角的定义及角平分线的定义即可得解;
(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;
(3),过,分别作,,根据
解析:(1)90°;(2)见解析;(3)不变,180°
【分析】
(1)根据邻补角的定义及角平分线的定义即可得解;
(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;
(3),过,分别作,,根据平行线的性质及平角的定义即可得解.
【详解】
解(1),分别平分和,
,,
,
;
(2),
,即,
,
是的平分线,
,
,
又,
,
又在的内部,
平分;
(3)如图,不发生变化,,过,分别作,,
则有,
,,,,
,,
,
,,
,
,
不变.
【点睛】
此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是解题的关键.
三、解答题
11.(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也
解析:(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数;
(3)不变,分三种情况讨论即可.
【详解】
(1)∵,,且
∴,
∴m=20,n=70
∴∠MOC=90゜-∠AOM=70゜
∴∠MOC=∠OCQ=70゜
∴MN∥PQ
(2)∵∠AON=180゜-∠AOM=160゜
又∵平分,平分
∴,
∵
∴
∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜
故答案为:45.
(3)不变,理由如下:
如图,当0゜<α<20゜时,
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠MOC=∠OCQ=2x
∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON
∴∠DON=45゜+x
∵∠MOE=∠DON=45゜+x
∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x
∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜
当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜
当20゜<α<90゜时,如图
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠NOC=180゜-∠OCQ=180゜-2x
∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON
∴∠AOE=135゜-x
∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜
∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜
综上所述,∠EOF的度数不变.
【点睛】
本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.
12.(1)见解析;(2)见解析;(3)见解析;.
【分析】
(1)过点C作,得到,再根据,,得到,进而得到,最后证明;
(2)先证明,再证明,得到,问题得证;
(3)根据题意得到,根据(2)结论得到∠D
解析:(1)见解析;(2)见解析;(3)见解析;.
【分析】
(1)过点C作,得到,再根据,,得到,进而得到,最后证明;
(2)先证明,再证明,得到,问题得证;
(3)根据题意得到,根据(2)结论得到∠DEF=∠ECA=,进而得到,根据三角形内角和即可求解.
【详解】
解:(1)过点C作,
,
,
,
,
,
,
,
,
;
(2)解:,,
又,
,
,
,
,
,
;
(3)如图三角形DEF即为所求作三角形.
∵,
∴,
由(2)得,DE∥AC,
∴∠DEF=∠ECA=,
∵,
∴∠ACB=,
∴ ,
∴∠A=180°-=.
故答案为为:.
【点睛】
本题考查了平行线的判定,三角形的内角和等知识,综合性较强,熟练掌握相关知识,根据题意画出图形是解题关键.
13.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β
【分析】
(1)过P作PE∥AB,通过平行线性质求∠A
解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β
【分析】
(1)过P作PE∥AB,通过平行线性质求∠APC即可;
(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.
【详解】
解:(1)过点P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠A+∠APE=180°,∠C+∠CPE=180°,
∵∠PAB=130°,∠PCD=120°,
∴∠APE=50°,∠CPE=60°,
∴∠APC=∠APE+∠CPE=110°.
故答案为110°;
(2)∠CPD=∠α+∠β,
理由是:如图3,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β;
(3)当P在BA延长线时,∠CPD=∠β-∠α,
理由是:如图4,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE =∠β-∠α;
当P在AB延长线时,∠CPD=∠α-∠β,
理由是:如图5,过P作PE∥AD交CD于E,
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE -∠CPE =∠α-∠β.
【点睛】
本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.
14.(1);(2)①或;②秒或或秒
【分析】
(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;
(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间
解析:(1);(2)①或;②秒或或秒
【分析】
(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;
(2)①当时,分两种情况,Ⅰ当在和之间,Ⅱ当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数;
②根据题意可知,当时,分三种情况,
Ⅰ射线由逆时针转动,,根据题意可知,,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论;
Ⅱ射线垂直时,再顺时针向运动时,,根据题意可知,,,,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案;
Ⅲ射线垂直时,再顺时针向运动时,,根据题意可知,,,根据(1)中结论,,,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论.
【详解】
解:(1)延长与相交于点,
如图1,
,
,
,
;
(2)①Ⅰ如图2,
,,
,
射线运动的时间(秒,
射线旋转的角度,
又,
;
Ⅱ如图3所示,
,,
,
射线运动的时间(秒,
射线旋转的角度,
又,
;
的度数为或;
②Ⅰ当由运动如图4时,
与相交于点,
根据题意可知,经过秒,
,,
,
,
又,
,
解得(秒;
Ⅱ当运动到,再由运动到如图5时,
与相交于点,
根据题意可知,经过秒,
,
,
,,
运动的度数可得,,
解得;
Ⅲ当由运动如图6时,,
根据题意可知,经过秒,
,,
,,
,,
又,
,
,
解得(秒),
当的值为秒或或秒时,.
【点睛】
本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键.
15.(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,
解析:(1),见解析;(2);(3)60°
【分析】
(1)作EF//AB,如图1,则EF//CD,利用平行线的性质得∠1=∠BAE,∠2=∠CDE,从而得到∠BAE+∠CDE=∠AED;
(2)如图2,由(1)的结论得∠AFD=∠BAF+∠CDF,根据角平分线的定义得到∠BAF=∠BAE,∠CDF=∠CDE,则∠AFD=(∠BAE+∠CDE),加上(1)的结论得到∠AFD=∠AED;
(3)由(1)的结论得∠AGD=∠BAF+∠CDG,利用折叠性质得∠CDG=4∠CDF,再利用等量代换得到∠AGD=2∠AED-∠BAE,加上90°-∠AGD=180°-2∠AED,从而可计算出∠BAE的度数.
【详解】
解:(1)
理由如下:
作,如图1,
,
.
,,
;
(2)如图2,由(1)的结论得,
、的两条平分线交于点F,
,,
,
,
;
(3)由(1)的结论得,
而射线沿翻折交于点G,
,
,
,
,
.
【点睛】
本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.
四、解答题
16.(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF
解析:(1)证明见解析;(2)900° ,180°(n-1);(3)(180n-180-2m)°
【详解】
【模型】
(1)证明:过点E作EF∥CD,
∵AB∥CD,
∴EF∥AB,
∴∠1+∠MEF=180°,
同理∠2+∠NEF=180°
∴∠1+∠2+∠MEN=360°
【应用】
(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;
由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),
故答案是:900° , 180°(n-1);
(3)过点O作SR∥AB,
∵AB∥CD,
∴SR∥CD,
∴∠AM1O=∠M1OR
同理∠C MnO=∠MnOR
∴∠A M1O+∠CMnO=∠M1OR+∠MnOR,
∴∠A M1O+∠CMnO=∠M1OMn=m°,
∵M1O平分∠AM1M2,
∴∠AM1M2=2∠A M1O,
同理∠CMnMn-1=2∠CMnO,
∴∠AM1M2+∠CMnMn-1=2∠AM1O+2∠CMnO=2∠M1OMn=2m°,
又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CMnMn-1=180°(n-1),
∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°
点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.
17.(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠
解析:(1)∠AEB的大小不会发生变化,∠ACB=45°;(2)30°,60°;(3)60°或72°.
【分析】
(1)由直线MN与直线PQ垂直相交于O,得到∠AOB=90°,根据三角形的外角的性质得到∠PAB+∠ABM=270°,根据角平分线的定义得到∠BAC=∠PAB,∠ABC=∠ABM,于是得到结论;
(2)由于将△ABC沿直线AB折叠,若点C落在直线PQ上,得到∠CAB=∠BAQ,由角平分线的定义得到∠PAC=∠CAB,即可得到结论;根据将△ABC沿直线AB折叠,若点C落在直线MN上,得到∠ABC=∠ABN,由于BC平分∠ABM,得到∠ABC=∠MBC,于是得到结论;
(3)由∠BAO与∠BOQ的角平分线相交于E可得出∠E与∠ABO的关系,由AE、AF分别是∠BAO和∠OAG的角平分线可知∠EAF=90°,在△AEF中,由一个角是另一个角的倍分情况进行分类讨论即可.
【详解】
解:(1)∠ACB的大小不变,
∵直线MN与直线PQ垂直相交于O,
∴∠AOB=90°,
∴∠OAB+∠OBA=90°,
∴∠PAB+∠ABM=270°,
∵AC、BC分别是∠BAP和∠ABM角的平分线,
∴∠BAC=∠PAB,∠ABC=∠ABM,
∴∠BAC+∠ABC=(∠PAB+∠ABM)=135°,
∴∠ACB=45°;
(2)∵将△ABC沿直线AB折叠,若点C落在直线PQ上,
∴∠CAB=∠BAQ,
∵AC平分∠PAB,
∴∠PAC=∠CAB,
∴∠PAC=∠CAB=∠BAO=60°,
∵∠AOB=90°,
∴∠ABO=30°,
∵将△ABC沿直线AB折叠,若点C落在直线MN上,
∴∠ABC=∠ABN,
∵BC平分∠ABM,
∴∠ABC=∠MBC,
∴∠MBC=∠ABC=∠ABN,
∴∠ABO=60°,
故答案为:30°,60°;
(3)∵AE、AF分别是∠BAO与∠GAO的平分线,
∴∠EAO=∠BAO,∠FAO=∠GAO,
∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠
展开阅读全文