1、人教版数学初二上册期末试题附解析(一)一、选择题1下列图形中,既是轴对称图形又是中心对称图形的是()ABCD2中科院发现“绿色”光刻胶,精度可达0.00000000014米,数字0.00000000014用科学记数法可表示为()ABCD3下列运算正确的是()ABCD4使分式有意义的条件是()Ax3Bx3Cx3Dx35下列从左到右的变形中属于因式分解的是()ABCD6下列变形中,正确的是()ABCD7如图,在菱形中,添加一个条件不能证明的是()ABCD8若关于x的一次函数的图象不经过第二象限,且关于x的分式方程有非负整数解,则符合条件的所有整数m的和是()A1B2C3D59如图,BD平分ABC交
2、AC于点D若,则ADB()A100B105C110D12010如图,在和中,连接AC,BD交于点M,AC与OD相交于E,BD与OA相较于F,连接OM,则下列结论中:;MO平分,正确的个数有()A4个B3个C2个D1个二、填空题11当时,分式的值为;而当时,分式无意义,则_12在平面直角坐标系中,若点P(a3,1)与点Q(2,b+1)关于x轴对称,则a+b的值是_13已知ab1,则_;_14已知,m,n为正整数,则_(用含a,b的式子表示)15如图,在RtABC中,BD是ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且,则的最小值为_16(1)已知,则的值是_(2)若是完
3、全平方式,则_17如图,多边形ABCDE为正五边形,则ACB的度数为_18ABC中,ABAC12厘米,BC8厘米,点D为AB的中点,如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动,若点Q的运动速度为 _米/秒,BPD能够与CQP全等 三、解答题19把下列多项式因式分解:(1)(2)20计算:(1)1;(2)21如图已知ABCDEF,点B、E、C、F在同一直线上,A85,B60,AB8,EH2(1)求F的度数与DH的长;(2)求证:ABDE22RtABC中,C90,点D、E分别是ABC边AC、BC上的点,点P是一动点令PDA1,PEB2,DPE(1
4、)若点P在线段AB上,如图(1)所示,且50,则1+2 ;(2)若点P在边AB上运动,如图(2)所示,则、12之间有何关系?(3)若点P在RtABC斜边BA的延长线上运动(CECD),则、12之间有何关系?猜想并说明理由23“双减”政策受到各地教育部门的积极响应,某校为增加学生的课外活动时间,现决定增购两种体育器材,篮球和足球已知每个篮球的单价比每个足球的单价多25元,用840元购买篮球和用590元购买足球的数量相同(1)求篮球和足球的单价分别是多少元?(2)学校决定购买两种球类共40个,若购买足球的数量不超过篮球的2倍,那么该校最多购买多少个足球?24问题情景:分解下列因式,将结果直接写在横
5、线上:_;_;_探究发现:观察以上三个多项式的系数,我们发现:;归纳猜想:若多项式是完全平方式,则系数a,b,c存在某种关系,请你猜想并用式子表示出a,b,c之间的关系验证结论:请你写出一个不同于上面出现的完全平方式,并验证你猜想的结论解决问题:若多项式是一个完全平方式,利用你猜想的结论求出m的值25如图,直线AB与x轴负半轴、y轴正半轴分别交于A(a,0)、B(0,b)两点(1)若b210b250,判断AOB的形状,并说明理由;(2)如图,在(1)的条件下,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,MN=7,求BN的长;(3)如图,若即点A
6、不变,点B在y轴正半轴上运动,分别以OB、AB为直角边在第一、第二象限作等腰直角OBF和等腰直角ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想PB的长是否为定值,若是,请求出其值;若不是,请求其取值范围26如图,等边中,点在上,延长到,使,连,过点作与点(1)如图1,若点是中点,求证:;(2)如图2,若点是边上任意一点,的结论是否仍成立?请证明你的结论;(3)如图3,若点是延长线上任意一点,其他条件不变,的结论是否仍成立?画出图并证明你的结论【参考答案】一、选择题2A解析:A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:既是中心对称图形又是轴对称图形的只有A故选:A【点
7、睛】掌握好中心对称与轴对称的概念轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合3D解析:D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000 000 000 14用科学记数法可表示为1.41010,故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定4D解析:D【分析】直接利用幂的乘方和积的乘方运
8、算法则、同底数幂的乘除运算法则分别计算得出答案【详解】解:A、,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,故此选项正确;故选:D【点睛】此题主要考查了幂的乘方和积的乘方运算法则、同底数幂的乘除法,正确掌握相关运算法则是解题关键5D解析:D【分析】根据分式有意义的条件:分母0,即x30,进行求解即可【详解】解:分式有意义,x30,解得x3故选:D【点睛】此题考查了分式有意义的条件,熟练掌握分式有意义的条件:分母不等于0,是解决问题的关键6D解析:D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案【详解】解:A,
9、左边不是多项式,不是因式分解,故不合题意; B,右边不是几个整式的积的形式,不符合因式分解的定义,故不符合题意; C,是整式的乘法运算,故不合题意; D,符合因式分解的定义,属于因式分解,故符合题意; 故选:D【点睛】本题主要考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,牢记定义是解题的关键7A解析:A【分析】根据分式的性质,对选项逐个判断即可【详解】解:A、,选项正确,符合题意;B、,选项错误,不符合题意;C、,选项错误,不符合题意;D、当时,等号右边的式子没有意义,选项错误,不符合题意;故选:A【点睛】此题考查了分式的性质,涉及了平方差公式,解题的关键是熟练掌握分式的有关性质8
10、C解析:C【分析】先根据菱形性质得出AB=CD,ABE=CDF,利用ASA可判断A;利用AAS可判断B;根据SSA不能判断C;利用SAS可判断D【详解】解:四边形ABCD为菱形,AB=CD,ABE=CDF,A. 添加,在ABE和CDF中,ABECDF(ASA),故选项A正确,不合题意;B. 添加,在ABE和CDF中,ABECDF(AAS),故选项B正确,不合题意;C. 添加,根据SSA条件不能判断ABE和CDF全等;故选项C不正确,符合题意;D. ,在ABE和CDF中,ABECDF(SAS),故选项D正确,不合题意故选C【点睛】本题考查菱形的性质,添加条件判断三角形全等,掌握菱形性质,三角形全
11、等判定方法是解题关键9A解析:A【分析】先利用一次函数的性质列不等式组求解m的范围,再解分式方程可得结合分式方程的解为非负整数确定m的值,从而可得答案【详解】解:一次函数y=(m+3)x+m-5的图象不经过第二象限, 解得-3m5, 解分式方程 整理得: 得, 关于x的分式方程有非负整数解, 是非负整数且不等于2, m=-1,2, (-1)+2=1, 满足条件的所有整数m的和为1, 故选:A【点睛】本题考查一次函数的性质、分式方程的解,解答本题的关键是明确题意,求出满足条件的m的值,利用一次函数的性质和分式方程的知识解答10A解析:A【分析】根据角平分线性质,可得,结合三角形内角和定理与外角定
12、理即可【详解】解:BD平分ABC交AC于点D,即,又,即,故选:A【点睛】此题主要考查了三角形角平分线,解题关键是熟练运用三角形内角和定理与外角定理11B解析:B【分析】由SAS证明AOCBOD得出OCA=ODB,AC=BD,正确;由全等三角形的性质得出OAC=OBD,由三角形的外角性质得:AMB+OAC=AOB+OBD,得出AMB=AOB=30,正确;作OGMC于G,OHMB于H,则OGC=OHD=90,由AAS证明OCGODH,得出OG=OH,由角平分线的判定方法得出MO平分BMC,正确;由AOB=COD,得出当DOM=AOM时,OM才平分BOC,假设DOM=AOM,由AOCBOD得出CO
13、M=BOM,由MO平分BMC得出CMO=BMO,推出COMBOM,得OB=OC,而OA=OB,所以OA=OC,而OAOC,故错误;即可得出结论【详解】解:,即,在和中,正确;,由三角形的外角性质得:,正确;作于,于,如图所示:则,在和中,平分,正确;AOB=COD,当DOM=AOM时,OM才平分BOC,假设DOM=AOM,AOCBOD,COM=BOM,MO平分BMC,CMO=BMO,在COM和BOM中,COMBOM(ASA),OB=OC,OA=OBOA=OC与OAOC矛盾,错误;正确的个数有3个;故选择:.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三
14、角形全等是解题的关键二、填空题12【分析】把代入求出的值,再根据时分式无意义求出的值,代入进行计算即可【详解】解:当时,分式的值为,解得;当时,分式没有意义,解得,故答案为:【点睛】本题考查的是分式的值为和分式无意义的条件,熟练掌握相关基础知识是关键133【分析】掌握关于x轴对称的点,横坐标不变,纵坐标互为相反数,即可得出答案【详解】由题意可得:,解得:,因此a+b3故答案为:3【点睛】本题考查了关于坐标轴对称的点的特征,准确找出横纵坐标的关系是本题的关键14 1 1【分析】先通分,然后根据同分母分式相加,即可化简题目中的式子,然后将ab的值代入即可解答本题;先通分,然后根据同分母分式相加,即
15、可化简题目中的式子,然后将ab的值代入即可解答本题【详解】,当ab1时,原式,故答案为:1;,当ab1时,原式,故答案为:1.【点睛】本题考查的是分式的加法,熟练掌握分式的加法法则是解决本题的关键.15【分析】逆运用幂的乘方公式对已知式子变形后,再逆运用同底数幂的除法计算即可【详解】解:,故答案为:【点睛】本题考查幂的乘方公式和同底数幂的除法熟练掌握公式,并能逆运用是解题关键16【分析】作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1,解析:【分析】作点M关于BD的
16、对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,据此解答【详解】解:作点M关于BD的对称点,连接P=PM,BM=B=1,当N,P,在同一直线上,且时,的值最小,等于垂线段的长,的最小值为,故答案为:【点睛】本题考查最短路线问题,涉及垂线段最短、含30角直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键17【分析】(1)由,将代入求解即可;(2)根据完全平方公式求解即可【详解】解:(1)原式 故答案为:-11;(2)是完全平方公式原式解析: 【分析】(1)由,将代入求解即可;(2)根据完全平方公式求解即可【详解】解:(1)原式 故答案为:-11
17、;(2)是完全平方公式原式= 故答案为:【点睛】本题考查了多项式的乘法法则、整体思想以及利用完全平方公式求字母的值掌握多项式乘多项式的法则和完全平方公式是解题的关键1836【分析】根据正多边形的性质和内角和公式,可知B=108,AB=BC,再由等腰三角形的性质以及三角形内角和求ACB的度数.【详解】解:多边形ABCDE为正五边形AB=BC解析:36【分析】根据正多边形的性质和内角和公式,可知B=108,AB=BC,再由等腰三角形的性质以及三角形内角和求ACB的度数.【详解】解:多边形ABCDE为正五边形AB=BC又五边形的内角和为(5-2)180=540B=5405=108AB=BCACB=(
18、180-108)=36故答案为:36.【点睛】本题考查了正多边形的性质和内角和公式,等腰三角形的性质以及三角形内角和,熟练地掌握这些知识是解题的关键.193或4.5【分析】根据等腰三角形的性质得出BC,根据全等三角形的判定得出两种情况:BDCP,BPCQ,BDCQ,BPPC,设运动时间为t秒,列出方程,再求出答案即可【详解析:3或4.5【分析】根据等腰三角形的性质得出BC,根据全等三角形的判定得出两种情况:BDCP,BPCQ,BDCQ,BPPC,设运动时间为t秒,列出方程,再求出答案即可【详解】解:设运动时间为t秒,AB12厘米,点D为AB的中点,BDAB6(cm),ABAC,BC,要使,BP
19、D能够与CQP全等,有两种情况:BDCP,BPCQ,83t6,解得:t,CQBP32,点Q的运动速度为23(厘米/秒);BDCQ,BPPC,BC8厘米,BPCPBC4(厘米),即3t4,解得:t,CQBD6厘米,点Q的运动速度为64.5(厘米/秒),故答案为:3或4.5【点睛】本题考查了全等三角形的判定和等腰三角形的性质,能求出符合的所有情况是解此题的关键,用了分类讨论思想三、解答题20(1)(2)【分析】(1)运用两次提取公因式法分解即可(2)先用提取公因式法,再用公式法分解因式即可(1)=(2)=【点睛】本题考查了因式解析:(1)(2)【分析】(1)运用两次提取公因式法分解即可(2)先用提
20、取公因式法,再用公式法分解因式即可(1)=(2)=【点睛】本题考查了因式分解,熟练掌握提取公因式法,公式法分解因式是解题的关键21(1);(2)【分析】(1)根据分式加法的性质计算,即可得到答案;(2)根据幂的乘方、同底数幂乘法和除法的性质计算,即可得到答案【详解】(1)1;(2) 解析:(1);(2)【分析】(1)根据分式加法的性质计算,即可得到答案;(2)根据幂的乘方、同底数幂乘法和除法的性质计算,即可得到答案【详解】(1)1;(2) 【点睛】本题考查了分式加减法、幂的乘方、同底数幂乘除法的知识;解题的关键是熟练掌握分式加减法、幂的乘方、同底数幂乘方和除法的性质,从而完成求解22(1)35
21、,6;(2)见解析【分析】(1)根据三角形内角和求得,再根据全等三角形的性质得到,即可求解;(2)由全等三角形的性质可得,即可求解【详解】解:(1)在中,解析:(1)35,6;(2)见解析【分析】(1)根据三角形内角和求得,再根据全等三角形的性质得到,即可求解;(2)由全等三角形的性质可得,即可求解【详解】解:(1)在中,故答案为,(2)【点睛】此题考查了全等三角形的性质,涉及了三角形内角和的性质,平行线的判定,解题的关键是掌握相关基本性质23(1)140;(2)1+290+;(3)1290理由见解析【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得1=PCD+CPD
22、,解析:(1)140;(2)1+290+;(3)1290理由见解析【分析】(1)连接PC,根据三角形的一个外角等于与它不相邻的两个内角的和可得1=PCD+CPD,2=PCE+CPE,再表示出1+2即可;(2)连接PC,方法与(1)相同;(3)利用三角形的一个外角等于与它不相邻的两个内角的和讨论求解即可【详解】解:(1)如图,连接PC,由三角形的外角性质,1PCD+CPD,2PCE+CPE,1+2PCD+CPD+PCE+CPEDPE+ACB,DPE50,ACB90,1+250+90140,故答案为:140(2)连接PC,由三角形的外角性质,1PCD+CPD,2PCE+CPE,1+2PCD+CPD
23、+PCE+CPEDPE+ACB,ACB90,DPE,1+290+.(3)如图1,由三角形的外角性质,2C+1+,2190+;如图2,0,21+90;如图3,21+C,1290【点睛】此题主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将1,2,转化到一个三角形或四边形中24(1)篮球的单价为84元,足球的单价为59元(2)26个【分析】(1)设每个足球的单价为x元,根据“用840元购买篮球和用590元购买足球的数量相同”列分式方程,求解即可;(2)设该校购解析:(1)篮球的单价为84元,足球的单价为59元(2)26个【分析】(1)设每个足球的单价为x元,
24、根据“用840元购买篮球和用590元购买足球的数量相同”列分式方程,求解即可;(2)设该校购买m个足球,根据“购买足球的数量不超过篮球的2倍”列一元一次不等式,求解即可(1)解:设每个足球的单价为x元,根据题意,得:,解得x=59,经检验,x=59是原方程的根,且符合题意,59+25=84(元),答:篮球的单价为84元,足球的单价为59元;(2)设该校购买m个足球,根据题意,得m2(40-m),解得m,m取得的最大正整数为26,答:该校最多购买26个足球【点睛】本题考查了分式方程的应用,一元一次不等式的应用,理解题意并根据题意建立关系式是解题的关键25问题情境 :(x1)2,(3x5)2,(2
25、x6)2;归纳猜想:4ac;验证结论:(答案不唯一)如:4x4, 验证:见解析;解决问题:m2【分析】问题情景:可用完全平方公式进行解析:问题情境 :(x1)2,(3x5)2,(2x6)2;归纳猜想:4ac;验证结论:(答案不唯一)如:4x4, 验证:见解析;解决问题:m2【分析】问题情景:可用完全平方公式进行分解因式;归纳猜想:根据问题情境,式子中的系数关系,可猜想b2=4ac;验证结论:可用完全平方公式进行验证;解决问题:多项式ax2+bx+c(a0)是完全平方式,则系数a,b,c存在的关系为b2=4ac,可列-(2m+8)2=4(m+2)(m+7),进而求出m的值【详解】问题情境 :(x
26、1)2,(3x5)2,(2x6)2 归纳猜想: 4ac 验证结论:(答案不唯一)如:4x4, 验证:因为16,4ac41416. 所以4ac 解决问题:根据题意,得24(m2)(m7)432m644(9m14)432m64436m56m2【点睛】本题考查了学生的归纳总结能力和完全平方公式的综合应用,以及对因式分解的理解和应用,综合性较强26(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)解析:(1)AOB为等腰直角三角形;理由见解析(2)BN=3(3)PB的长为定值;
27、【分析】(1)根据题意求出a、b的值,即可得出A与B坐标,根据OAOB,即可确定AOB的形状;(2)由OAOB,利用AAS得到AMOONB,用对应线段相等求长度;(3)如图,作EKy轴于K点,利用AAS得到AOBBKE,利用全等三角形对应边相等得到OABK,EKOB,再利用AAS得到PBFPKE,寻找相等线段,并进行转化,求PB的长(1)解:结论:OAB是等腰直角三角形;理由如下:b210b250,即,解得:,A(5,0),B(0,5),OAOB5,AOB是等腰直角三角形(2)解:AMOQ,BNOQ,在AMO与ONB中,AMOONB(AAS),AMON4,BNOM,MN7,OM3,BNOM3(
28、3)解:结论:PB的长为定值理由如下,作EKy轴于K点,如图所示:ABE为等腰直角三角形,ABBE,ABE90,EBKABO90,EBKBEK90,ABOBEK,在AOB和BKE中,AOBBKE(AAS),OABK,EKOB,OBF为等腰直角三角形,OBBF,EKBF,在EKP和FBP中,PBFPKE(AAS),PKPB,PBBKOA【点睛】本题属于三角形综合题,考查非负数的性质,全等三角形的判定与性质、等腰直角三角形的性质等知识,熟练掌握全等三角形的判定与性质是解本题的关键27(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;(
29、2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论解析:(1)见解析;见解析(2)成立,见解析(3)成立,见解析【分析】(1)证明,推出,利用等腰三角形的性质,可得结论;(2) 仍然成立,过点D作DM/BC交AC于M,证明,可得结论;(3)结论仍然成立,过点D作DM/BC交AC于M,证明,可得结论(1)证明:如图为等边三角形,又为中点, , ,;,为等腰三角形,(2)仍然成立,理由如下:如图,过点D作DM/BC交AC于M为等边三角形,为等边三角形,在和中, ,而,(3)的结论仍然成立,理由如下:如图为所求作图作交的延长线于,易证为等边三角形,而,在和中,【点睛】本题属于三角形的综合题,考查了等边三角形的性质,全等三角形的判定和性质,解题的关键是学会添加适当的辅助线,构造全等三角形解决问题