收藏 分销(赏)

2022年人教版七7年级下册数学期末解答题考试试卷(含答案).doc

上传人:快乐****生活 文档编号:1845855 上传时间:2024-05-10 格式:DOC 页数:35 大小:1.05MB
下载 相关 举报
2022年人教版七7年级下册数学期末解答题考试试卷(含答案).doc_第1页
第1页 / 共35页
2022年人教版七7年级下册数学期末解答题考试试卷(含答案).doc_第2页
第2页 / 共35页
2022年人教版七7年级下册数学期末解答题考试试卷(含答案).doc_第3页
第3页 / 共35页
2022年人教版七7年级下册数学期末解答题考试试卷(含答案).doc_第4页
第4页 / 共35页
2022年人教版七7年级下册数学期末解答题考试试卷(含答案).doc_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、2022年人教版七7年级下册数学期末解答题考试试卷(含答案)一、解答题1有一块面积为100cm2的正方形纸片(1)该正方形纸片的边长为 cm(直接写出结果);(2)小丽想沿着该纸片边的方向裁剪出一块面积为90cm2的长方形纸片,使它的长宽之比为4:3小丽能用这块纸片裁剪出符合要求的纸片吗?2如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长3小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2

2、,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.4求下图的方格中阴影部分正方形面积与边长5有一块正方形钢板,面积为16平方米(1)求正方形钢板的边长(2)李师傅准备用它裁剪出一块面积为12平方米的长方形工件,且要求长宽之比为,问李师傅能办到吗?若能,求出长方形的长和宽;若不能,请说明理由(参考数据:,)二、解答题6如图,直线AB直线CD,线段EFCD,连接BF、CF(1)求证:ABF+DCFBFC;(2)连接BE、CE、BC,若BE平分ABC,BECE,求证:CE平分BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若BFCBCF,FBG

3、2ECF,CBG70,求FBE的度数7已知,ABCD,点E为射线FG上一点(1)如图1,若EAF25,EDG45,则AED= (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则AED、EAF、EDG之间满足怎样的关系,请说明你的结论;(3)如图3,当点E在FG延长线上时,DP平分EDC,AED32,P30,求EKD的度数8已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全

4、图形,猜想并证明:BEG与HFG之间的数量关系9问题情境:如图1,ABCD,PAB130,PCD120求APC的度数小明的思路是:过P作PEAB,通过平行线性质,可得APCAPE+CPE50+60110问题解决:(1)如图2,ABCD,直线l分别与AB、CD交于点M、N,点P在直线I上运动,当点P在线段MN上运动时(不与点M、N重合),PAB,PCD,判断APC、之间的数量关系并说明理由;(2)在(1)的条件下,如果点P在线段MN或NM的延长线上运动时请直接写出APC、B之间的数量关系;(3)如图3,ABCD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,BAP和DCP的平

5、分线交于点Q若APC116,请结合(2)中的规律,求AQC的度数10已知,如图:射线分别与直线、相交于、两点,的角平分线与直线相交于点,射线交于点,设,且(1)_,_;直线与的位置关系是_;(2)如图,若点是射线上任意一点,且,试找出与之间存在一个什么确定的数量关系?并证明你的结论(3)若将图中的射线绕着端点逆时针方向旋转(如图)分别与、相交于点和点时,作的角平分线与射线相交于点,问在旋转的过程中的值变不变?若不变,请求出其值;若变化,请说明理由三、解答题11已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_,_(2)现固定的位置不变,将沿方向平移至点E正好落在上

6、,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数12如图,已知是直线间的一点,于点交于点(1)求的度数;(2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒当时,求的度数;当时,求t的值13如图,直线,一副三角板(,)按如图放置,其中点在直线上,点均在直线上,且平分(1)求的度数(2)如图,若将三角形绕点以每秒的速度按逆时针方向旋转(的对应

7、点分别为)设旋转时间为秒在旋转过程中,若边,求的值;若在三角形绕点旋转的同时,三角形绕点以每秒的速度按顺时针方向旋转(的对应点分别为)请直接写出当边时的值14(感知)如图,求的度数小明想到了以下方法:解:如图,过点作,(两直线平行,内错角相等)(已知),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补)(已知),(等式的性质)(等式的性质)即(等量代换)(探究)如图,求的度数(应用)如图所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_15如图1,D是ABC延长线上的一点,CEAB(1)求证:ACDA+B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分ECD

8、,FA平分HAD,若BAD70,求F的度数(3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分QGD交AH于R,QN平分AQG交AH于N,QMGR,猜想MQN与ACB的关系,说明理由四、解答题16如图,将一副直角三角板放在同一条直线AB上,其中ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂

9、直(直接写出结果)17操作示例:如图1,在ABC中,AD为BC边上的中线,ABD的面积记为S1,ADC的面积记为S2则S1=S2解决问题:在图2中,点D、E分别是边AB、BC的中点,若BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在ABC中,点D在边BC上,且BD=2CD,ABD的面积记为S1,ADC的面积记为S2则S1与S2之间的数量关系为 (2)如图4,在ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若BOC的面积为3,则四边形ADOE的面积为 .18如图,ABC和ADE有公共顶点A,ACBAED90,BAC=45,DA

10、E=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由19如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值20问题情境:如图1,ABCD,PAB=130,

11、PCD=120求APC度数小明的思路是:如图2,过P作PEAB,通过平行线性质,可得APC=50+60=110问题迁移:(1)如图3,ADBC,点P在射线OM上运动,当点P在A、B两点之间运动时,ADP=,BCP=CPD、之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出CPD、间的数量关系【参考答案】一、解答题1(1)10;(2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算解析:(1)10;(

12、2)小丽不能用这块纸片裁出符合要求的纸片【分析】(1)根据算术平方根的定义直接得出;(2)直接利用算术平方根的定义长方形纸片的长与宽,进而得出答案【详解】解:(1)根据算术平方根定义可得,该正方形纸片的边长为10cm;故答案为:10;(2)长方形纸片的长宽之比为4:3,设长方形纸片的长为4xcm,则宽为3xcm,则4x3x90,12x290,x2,解得:x或x-(负值不符合题意,舍去),长方形纸片的长为2cm,56,102,小丽不能用这块纸片裁出符合要求的纸片【点睛】本题考查了算术平方根解题的关键是掌握算术平方根的定义:一个正数的正的平方根叫这个数的算术平方根;0的算术平方根为0也考查了估算无

13、理数的大小2(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键3(1)可以以正方形一边为长方形的长,在其邻边上截取长为1

14、5cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cma2=400又a0a=20又要裁出的长方形面积为300cm2若以原正方形纸片的边长为长方形的长,则长方形的宽为:30020=15(cm)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)长方形纸片的长宽之比为3:2设长方形

15、纸片的长为3xcm,则宽为2xcm6x 2=300x 2=50又x0x =长方形纸片的长为又202即:20小丽不能用这块纸片裁出符合要求的纸片48;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边解析:8;【分析】用大正方形的面积减去4个小直角三角形的面积可得到所求的正方形的面积为8,然后利用正方形面积公式求8的算术平方根即可【详解】解:正方形面积=44-422=8;正方形的边长=【点睛】本题考查了算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数

16、x叫做a的算术平方根记为5(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解解析:(1)4米 (2)见解析【分析】(1)根据正方形边长与面积间的关系求解即可;(2)设长方形的长宽分别为米、米,由其面积可得x值,比较长方形的长和宽与正方形边长的大小可得结论.【详解】解:(1)正方形的面积是16平方米,正方形钢板的边长是米;(2)设长方形的长宽分别为米、米,则,长方形长是米,而正方形的边长为4米,所以李师傅不能办到.【点睛】本题考查了算术平方根的实际应用,灵活的利用

17、算术平方根表示正方形和长方形的边长是解题的关键.二、解答题6(1)证明见解析;(2)证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1)的结论和三角形的角的关系解答即可【详解】证明:(1)ABCD,EFCD,ABEF,ABFBFE,EFCD,DCFEFC,BFCBFE+EFCABF+DCF;(2)BEEC,BEC9

18、0,EBC+BCE90,由(1)可得:BFCABE+ECD90,ABE+ECDEBC+BCE,BE平分ABC,ABEEBC,ECDBCE,CE平分BCD;(3)设BCE,ECF,CE平分BCD,DCEBCE,DCFDCEECF,EFC,BFCBCF,BFCBCE+ECF+,ABFBFE2,FBG2ECF,FBG2,ABE+DCEBEC90,ABE90,GBEABEABFFBG9022,BE平分ABC,CBEABE90,CBGCBE+GBE,7090+9022,整理得:2+55,FBEFBG+GBE2+902290(2+)35【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答

19、7(1)70;(2),证明见解析;(3)122【分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,由角平分线解析:(1)70;(2),证明见解析;(3)122【分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求【详解】解:(1)过作,故答案为:;(2)理由如下:过作,;(3),设,则,又,平分,即,解得,【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键8(1)18;2BE

20、G+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可解析:(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+

21、HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90(2)如图2中,结论:2BEG-HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型9(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点

22、P在线段MN或NM的延长线解析:(1)APC=+,理由见解析;(2)APC=-或APC=-;(3)58【分析】(1)过点P作PEAB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PEAB,QFAB,根据平行线的判定与性质及角的和差即可求解【详解】解:(1)如图2,过点P作PEAB,ABCD,PEABCD,APE=,CPE=,APC=APE+CPE=+(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,ABCD,PAB=,1=PAB=,1=APC+PCD,PCD=,=APC+,A

23、PC=-;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,ABCD,PCD=,2=PCD=,2=PAB+APC,PAB=,=+APC,APC=-;(3)如图3,过点P,Q分别作PEAB,QFAB,ABCD,ABQFPECD,BAP=APE,PCD=EPC,APC=116,BAP+PCD=116,AQ平分BAP,CQ平分PCD,BAQ=BAP,DCQ=PCD,BAQ+DCQ=(BAP+PCD)=58,ABQFCD,BAQ=AQF,DCQ=CQF,AQF+CQF=BAQ+DCQ=58,AQC=58【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键

24、10(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2解析:(1)35,35,平行;(2)FMN+GHF=180,证明见解析;(3)不变,2【分析】(1)根据(-35)2+|-|=0,即可计算和的值,再根据内错角相等可证ABCD;(2)先根据内错角相等证GHPN,再根据同旁内角互补和等量代换得出FMN+GHF=180;(3)作PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ERFQ,得FQM1=R,设PER=REB=x,PM1R=RM1B=y,得出EPM1=2R,

25、即可得=2【详解】解:(1)(-35)2+|-|=0,=35,PFM=MFN=35,EMF=35,EMF=MFN,ABCD;(2)FMN+GHF=180;理由:由(1)得ABCD,MNF=PME,MGH=MNF,PME=MGH,GHPN,GHM=FMN,GHF+GHM=180,FMN+GHF=180;(3)的值不变,为2,理由:如图3中,作PEM1的平分线交M1Q的延长线于R,ABCD,PEM1=PFN,PER=PEM1,PFQ=PFN,PER=PFQ,ERFQ,FQM1=R,设PER=REB=x,PM1R=RM1B=y,则有:,可得EPM1=2R,EPM1=2FQM1,=2【点睛】本题主要考

26、查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键三、解答题11(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BCDE时,当BCEF时,当BCDF时,三种情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=B

27、AC,DEA=+BAC,= DEA -BAC=60-45=15,E、C、A三点共线,=180-DFE=180-30=150;故答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DFE=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=45+30-45=30;当BCEF时,如图2,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,

28、ACDE,CAN=DEG=15,BAM=MAN-CAN-BAC=180-15-45=120综上所述,BAM的度数为30或90或120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点12(1);(2)或;秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)当时,分两种情况,当在和之间,当在和之间,由,计算出的运动时间解析:(1);(2)或;秒或或秒【分

29、析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)当时,分两种情况,当在和之间,当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数;根据题意可知,当时,分三种情况,射线由逆时针转动,根据题意可知,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论;射线垂直时,再顺时针向运动时,根据题意可知,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案;射线垂直时,再顺时针向运动时,根据题意可知,根据(1)中结论,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论【详解】解:(1)延长与相交于点

30、,如图1,;(2)如图2,射线运动的时间(秒,射线旋转的角度,又,;如图3所示,射线运动的时间(秒,射线旋转的角度,又,;的度数为或;当由运动如图4时,与相交于点,根据题意可知,经过秒,又,解得(秒;当运动到,再由运动到如图5时,与相交于点,根据题意可知,经过秒,运动的度数可得,解得;当由运动如图6时,根据题意可知,经过秒,又,解得(秒),当的值为秒或或秒时,【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键13(1)60;(2)6s;s或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题(2)首先证明GBC=DCN=30,由此构建方程即可解决问题分

31、两种情形:如图中,当解析:(1)60;(2)6s;s或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题(2)首先证明GBC=DCN=30,由此构建方程即可解决问题分两种情形:如图中,当BGHK时,延长KH交MN于R根据GBN=KRN构建方程即可解决问题如图-1中,当BGHK时,延长HK交MN于R根据GBN+KRM=180构建方程即可解决问题【详解】解:(1)如图中,ACB=30,ACN=180-ACB=150,CE平分ACN,ECN=ACN=75,PQMN,QEC+ECN=180,QEC=180-75=105,DEQ=QEC-CED=105-45=60(2)如图中,BGCD,GBC=

32、DCN,DCN=ECN-ECD=75-45=30,GBC=30,5t=30,t=6s在旋转过程中,若边BGCD,t的值为6s如图中,当BGHK时,延长KH交MN于RBGKR,GBN=KRN,QEK=60+4t,K=QEK+KRN,KRN=90-(60+4t)=30-4t,5t=30-4t,t=s如图-1中,当BGHK时,延长HK交MN于RBGKR,GBN+KRM=180,QEK=60+4t,EKR=PEK+KRM,KRM=90-(180-60-4t)=4t-30,5t+4t-30=180,t=s综上所述,满足条件的t的值为s或s【点睛】本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平

33、分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题14探究 70;应用 35【分析】探究如图,根据ABCD,AEP=50,PFC=120,即可求EPF的度数应用如图所示,在探究的条件下,根据PEA的平分线解析:探究 70;应用 35【分析】探究如图,根据ABCD,AEP=50,PFC=120,即可求EPF的度数应用如图所示,在探究的条件下,根据PEA的平分线和PFC的平分线交于点G,可得G的度数【详解】解:探究如图,过点P作PMAB,MPE=AEP=50(两直线平行,内错角相等)ABCD(已知),PMCD(平行于同一条直线的两直线

34、平行),PFC=MPF=120(两直线平行,内错角相等)EPF=MPF-MPE=12050=70(等式的性质)答:EPF的度数为70;应用如图所示,EG是PEA的平分线,PG是PFC的平分线,AEG=AEP=25,GCF=PFC=60,过点G作GMAB,MGE=AEG=25(两直线平行,内错角相等)ABCD(已知),GMCD(平行于同一条直线的两直线平行),GFC=MGF=60(两直线平行,内错角相等)G=MGF-MGE=60-25=35答:G的度数是35故答案为:35【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质15(1)证明见解析;(2)F=5

35、5;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角解析:(1)证明见解析;(2)F=55;(3)MQNACB;理由见解析【分析】(1)首先根据平行线的性质得出ACEA,ECDB,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出FCDECD,HAFHAD,进而得出F(HAD+ECD),然后根据平行线的性质得出HAD+ECD的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出, ,再通过等量代换即可得出MQNACB【详解】解:(1)CEAB,ACEA,ECDB,ACDACE+ECD,

36、ACDA+B;(2)CF平分ECD,FA平分HAD,FCDECD,HAFHAD,FHAD+ECD(HAD+ECD),CHAB,ECDB,AHBC,B+HAB180,BAD70, F(B+HAD)55;(3)MQNACB,理由如下:平分, 平分, , MQNMQGNQG180QGRNQG180(AQG+QGD)180(180CQG+180QGC)(CQG+QGC)ACB【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键四、解答题16(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON3

37、0,N=30可得MNCB,再根据两直线平行,同旁内角解析:(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角互补即可求出CEN的度数.(3)画出图形,求出在MNCD时的旋转角,再除以30即得结果.【详解】解:(1)在CEN中,CEN=180ECNCNE=1804530=105;(2)BON30,N=30,BONN,MNCB.OCD+CEN=180,OCD=45CEN=18045=135;(3)如图,MNCD时,旋转角为360904560=165,或360(6045)=34

38、5,所以在第16530=5.5或34530=11.5秒时,直线MN恰好与直线CD垂直【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去DOM的度数.17解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)解析:解决问题

39、:6; 拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到SADE=SBDE,SABE=SAEC,从而得到结论;拓展延伸:(1)作ABD的中线AE,则有BE=ED=DC,从而得到ABE的面积=AED的面积=ADC的面积,由此即可得到结论;(2)连接AO则可得到BOD的面积=BOC的面积,AOC的面积=AOD的面积,EOC的面积=BOC的面积的一半, AOB的面积=2AOE的面积设AOD的面积=a,AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论试题解析:解:解决问题连接AE点D、E分别是边AB、BC的中点,SADE=SBDE,SABE=SAECSBDE =2,SADE =2,SABE=SAEC=4,四边形ADEC的面积=2+4=6拓展延伸:解:(1)作ABD的中线AE

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服