收藏 分销(赏)

2022年人教版七7年级下册数学期末解答题试题(含答案).doc

上传人:天**** 文档编号:1921824 上传时间:2024-05-11 格式:DOC 页数:36 大小:1.22MB
下载 相关 举报
2022年人教版七7年级下册数学期末解答题试题(含答案).doc_第1页
第1页 / 共36页
2022年人教版七7年级下册数学期末解答题试题(含答案).doc_第2页
第2页 / 共36页
2022年人教版七7年级下册数学期末解答题试题(含答案).doc_第3页
第3页 / 共36页
2022年人教版七7年级下册数学期末解答题试题(含答案).doc_第4页
第4页 / 共36页
2022年人教版七7年级下册数学期末解答题试题(含答案).doc_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、2022年人教版七7年级下册数学期末解答题试题(含答案)一、解答题1(1)如图1,分别把两个边长为的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_;(2)若一个圆的面积与一个正方形的面积都是,设圆的周长为正方形的周长为,则_(填“”,或“”,或“”)(3)如图2,若正方形的面积为,李明同学想沿这块正方形边的方向裁出一块面积为的长方形纸片,使它的长和宽之比为,他能裁出吗?请说明理由?2如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上(1)求正方形的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标3如图1,用两个边长相同的小正方

2、形拼成一个大的正方形(1)如图2,若正方形纸片的面积为1,则此正方形的对角线AC的长为 dm(2)如图3,若正方形的面积为16,李明同学想沿这块正方形边的方向裁出一块面积为12的长方形纸片,使它的长和宽之比为32,他能裁出吗?请说明理由4工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:=1.414,=1.732,=2.236)5小丽想用一块面积为的正方形纸片,如图所示,沿着边的方向裁出一块面积为的长方形纸片,使它的长是宽的2倍她不知能否裁得出来,

3、正在发愁小明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片”你同意小明的说法吗?你认为小丽能用这块纸片裁出符合要求的纸片吗?为什么?二、解答题6如图1,已知直线CDEF,点A,B分别在直线CD与EF上P为两平行线间一点(1)若DAP40,FBP70,则APB (2)猜想DAP,FBP,APB之间有什么关系?并说明理由;(3)利用(2)的结论解答:如图2,AP1,BP1分别平分DAP,FBP,请你写出P与P1的数量关系,并说明理由;如图3,AP2,BP2分别平分CAP,EBP,若APB,求AP2B(用含的代数式表示)7如图,EBF50,点C是EBF的边BF上一点动点A从点B出发在

4、EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线ADBC(1)在动点A运动的过程中,(填“是”或“否”)存在某一时刻,使得AD平分EAC?(2)假设存在AD平分EAC,在此情形下,你能猜想B和ACB之间有何数量关系?并请说明理由;(3)当ACBC时,直接写出BAC的度数和此时AD与AC之间的位置关系8如图1,MNPQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间(1)求证:CABMCA+PBA;(2)如图2,CDAB,点E在PQ上,ECNCAB,求证:MCADCE;(3)如图3,BF平分ABP,CG平分ACN,AFCG若CAB60,求AFB的度数9如图1,

5、把一块含30的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上(1)根据图1填空:1 ,2 ;(2)现把三角板绕B点逆时针旋转n如图2,当n25,且点C恰好落在DG边上时,求1、2的度数;当0n180时,是否会存在三角板某一边所在的直线与直尺(有四条边)某一边所在的直线垂直?如果存在,请直接写出所有n的值和对应的那两条垂线;如果不存在,请说明理由10点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD(1)如图1,若点E在线段AC上,求证:B+D=BED;(2)若点E不在线段AC上,试猜想并证明B,D,BED之间的等量关系;(3)在(1)的条件下,如图2所

6、示,过点B作PB/ED,在直线BP,ED之间有点M,使得ABE=EBM,CDE=EDM,同时点F使得ABE=nEBF,CDE=nEDF,其中n1,设BMD=m,利用(1)中的结论求BFD的度数(用含m,n的代数式表示)三、解答题11如图,已知是直线间的一点,于点交于点(1)求的度数;(2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒当时,求的度数;当时,求t的值12已知ABCD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,A

7、MPPQN,PQ平分MPN(1)如图,求MPQ的度数(用含的式子表示);(2)如图,过点Q作QEPN交PM的延长线于点E,过E作EF平分PEQ交PQ于点F请你判断EF与PQ的位置关系,并说明理由;(3)如图,在(2)的条件下,连接EN,若NE平分PNQ,请你判断NEF与AMP的数量关系,并说明理由13综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图

8、2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由14如图1,在、内有一条折线(1)求证:;(2)在图2中,画的平分线与的平分线,两条角平分线交于点,请你补全图形,试探索与之间的关系,并证明你的结论;(3)在(2)的条件下,已知和均为钝角,点在直线、之间,且满足,(其中为常数且),直接写出与的数量关系15(感知)如图,求的度数小明想到了以下方法:解:如图,过点作,(两直线平行,内错角相等)(已知),(平行于同一条直线的两直线平行),(两直线平行,同旁内角互补)(已知),(等式的性质)(等式的性质)即(等量代换)(探究)如图,求的度数(应用)如图所示,在

9、(探究)的条件下,的平分线和的平分线交于点,则的度数是_四、解答题16如图,直线,、是、上的两点,直线与、分别交于点、,点是直线上的一个动点(不与点、重合),连接、(1)当点与点、在一直线上时,则_(2)若点与点、不在一直线上,试探索、之间的关系,并证明你的结论17在ABC中,BAC90,点D是BC上一点,将ABD沿AD翻折后得到AED,边AE交BC于点F(1)如图,当AEBC时,写出图中所有与B相等的角: ;所有与C相等的角: (2)若CB50,BADx(0x45) 求B的度数;是否存在这样的x的值,使得DEF中有两个角相等若存在,并求x的值;若不存在,请说明理由18小明在学习过程中,对教材

10、中的一个有趣问题做如下探究:(习题回顾)已知:如图1,在中,是角平分线,是高,、相交于点.求证:;(变式思考)如图2,在中,是边上的高,若的外角的平分线交的延长线于点,其反向延长线与边的延长线交于点,则与还相等吗?说明理由;(探究延伸)如图3,在中,上存在一点,使得,的平分线交于点.的外角的平分线所在直线与的延长线交于点.直接写出与的数量关系.19模型与应用.(模型)(1)如图,已知ABCD,求证1MEN2360. (应用)(2)如图,已知ABCD,则1+2+3+4+5+6的度数为 如图,已知ABCD,则1+2+3+4+5+6n的度数为 (3)如图,已知ABCD,AM1M2的角平分线M1 O与

11、CMnMn1的角平分线MnO交于点O,若M1OMnm在(2)的基础上,求2+3+4+5+6n1的度数(用含m、n的代数式表示)20如图,ABC和ADE有公共顶点A,ACBAED90,BAC=45,DAE=30(1)若DE/AB,则EAC ;(2)如图1,过AC上一点O作OGAC,分别交AB、AD、AE于点G、H、F若AO2,SAGH4,SAHF1,求线段OF的长;如图2,AFO的平分线和AOF的平分线交于点M,FHD的平分线和OGB的平分线交于点N,N+M的度数是否发生变化?若不变,求出其度数;若改变,请说明理由【参考答案】一、解答题1(1);(2);(3)不能,理由见解析【分析】(1)根据所

12、拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的解析:(1);(2);(3)不能,理由见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)小正方形的边长为1cm,小正方形的面积为1cm2,两个小正方形的面积之和为2cm2,即所拼成的大正方形的面积为2 cm2,设大正方形的边长为xcm, , 大

13、正方形的边长为cm;(2)设圆的半径为r,由题意得,设正方形的边长为a,故答案为:;(3)解:不能裁剪出,理由如下:正方形的面积为900cm2,正方形的边长为30cm长方形纸片的长和宽之比为,设长方形纸片的长为,宽为,则,整理得:,长方形纸片的长大于正方形的边长,不能裁出这样的长方形纸片【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查2(1)面积为29,边长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边

14、长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标即可【详解】解:(1)正方形的面积,正方形边长为;(2)建立如图平面直角坐标系,则,【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键3(1);(2)不能,理由见解析【分析】(1)由正方形面积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:解析:(1);(2)不能,理由见解析【分析】(1)由正方形面

15、积,可求得正方形边长,然后利用勾股定理即可求出对角线长;(2)利用方程思想求出长方形的长边,然后与正方形边长比较大小即可【详解】解:(1)正方形纸片的面积为,正方形的边长,故答案为:(2)不能;根据题意设长方形的长和宽分别为和长方形面积为:,解得:,长方形的长边为,他不能裁出【点睛】本题考查了算术平方根在长方形和正方形面积中的应用,灵活的进行算术平方根计算及无理数大小比较是解题的关键4(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3解析:(1)正方形工料

16、的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x分米、2x分米,得出方程3x2x=18,求出x=,再求出长方形的长和宽和5比较即可得出答案试题解析:(1)正方形的面积是 25 平方分米,正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则 3x2x=18,x2=3,x1= ,x2=(舍去),3x=35,2x=25 ,即这块正方形工料不合格5不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的

17、边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,解析:不同意,理由见解析【分析】先求得正方形的边长,然后设设长方形宽为,长为,然后依据矩形的面积为20列方程求得的值,从而得到矩形的边长,从而可作出判断【详解】解:不同意,因为正方形的面积为,故边长为设长方形宽为,则长为长方形面积,解得(负值舍去)长为即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片【点睛】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键二、解答题6(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据

18、两直线平行,内错角相等可得APM=解析:(1)110;(2)猜想:APB=DAP+FBP,理由见解析;(3)P=2P1,理由见解析;AP2B=【分析】(1)过P作PMCD,根据两直线平行,内错角相等可得APM=DAP,再根据平行公理求出CDEF然后根据两直线平行,内错角相等可得MPB=FBP,最后根据APM+MPB=DAP+FBP等量代换即可得证;(2)结论:APB=DAP+FBP (3)根据(2)的规律和角平分线定义解答; 根据的规律可得APB=DAP+FBP,AP2B=CAP2+EBP2,然后根据角平分线的定义和平角等于180列式整理即可得解【详解】(1)证明:过P作PMCD, APM=D

19、AP(两直线平行,内错角相等),CDEF(已知), PMCD(平行于同一条直线的两条直线互相平行), MPB=FBP(两直线平行,内错角相等), APM+MPB=DAP+FBP(等式性质) 即APB=DAP+FBP=40+70=110 (2)结论:APB=DAP+FBP 理由:见(1)中证明 (3)结论:P=2P1; 理由:由(2)可知:P=DAP+FBP,P1=DAP1+FBP1,DAP=2DAP1,FBP=2FBP1, P=2P1 由得APB=DAP+FBP,AP2B=CAP2+EBP2, AP2、BP2分别平分CAP、EBP, CAP2=CAP,EBP2=EBP, AP2B=CAP+EB

20、P, = (180-DAP)+ (180-FBP), =180- (DAP+FBP), =180- APB, =180- 【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键,此类题目,难点在于过拐点作平行线7(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD解析:(1)是;(2)BACB,证明见解析;(3)BAC40,ACAD【分析】(1)要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;(2)根据

21、角平分线可得EADCAD,由平行线的性质可得BEAD,ACBCAD,则有ACBB;(3)由ACBC,有ACB90,则可求BAC40,由平行线的性质可得ACAD【详解】解:(1)是,理由如下:要使AD平分EAC,则要求EADCAD,由平行线的性质可得BEAD,ACBCAD,则当ACBB时,有AD平分EAC;故答案为:是;(2)BACB,理由如下:AD平分EAC,EADCAD,ADBC,BEAD,ACBCAD,BACB(3)ACBC,ACB90,EBF50,BAC40,ADBC,ADAC【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键8(1)证明见解析;(2

22、)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120【分析】(1)过点A作ADMN,根据两直线平行,内错角相等得到MCADAC,PBADAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到、CAB+ACD180,由邻补角定义得到ECM+ECN180,再等量代换即可得解;(3)由平行线的性质得到,FAB120GCA,再由角平分线的定义及平行线的性质得到GCAABF60,最后根据三角形的内角和是180即可求解【详解】解:(1)

23、证明:如图1,过点A作ADMN,MNPQ,ADMN,ADMNPQ,MCADAC,PBADAB,CABDAC+DABMCA+PBA,即:CABMCA+PBA;(2)如图2,CDAB,CAB+ACD180,ECM+ECN180,ECNCABECMACD,即MCA+ACEDCE+ACE,MCADCE;(3)AFCG,GCA+FAC180,CAB60即GCA+CAB+FAB180,FAB18060GCA120GCA,由(1)可知,CABMCA+ABP,BF平分ABP,CG平分ACN,ACN2GCA,ABP2ABF,又MCA180ACN,CAB1802GCA+2ABF60,GCAABF60,AFB+AB

24、F+FAB180,AFB180FABFBA180(120GCA)ABF180120+GCAABF120【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键9(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相解析:(1)120,90;(2)1=120-n,2=90+n;见解析【分析】(1)根据邻补角的定义和平行线的性质解答;(2)根据邻补角的定义求出ABE,再根据两直线平行,同位角相等可得1=ABE,根据两直线平行,同旁内角互补求出BCG,

25、然后根据周角等于360计算即可得到2;结合图形,分AB、BC、AC三条边与直尺垂直讨论求解【详解】解:(1)1=180-60=120,2=90;故答案为:120,90;(2)如图2,ABC=60,ABE=180-60-n=120-n,DGEF, 1=ABE=120-n,BCG=180-CBF=180-n,ACB+BCG+2=360,2=360-ACB-BCG=360-90-(180-n)=90+n;当n=30时,ABC=60,ABF=30+60=90,ABDG(EF);当n=90时,C=CBF=90,BCDG(EF),ACDE(GF);当n=120时,ABDE(GF)【点睛】本题考查了平行线角

26、的计算,垂线的定义,主要利用了平行线的性质,直角三角形的性质,读懂题目信息并准确识图是解题的关键10(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,BED=D-B;当点E在AC的延长线上时,BED=BET-DET=B-D;(3)【分析】(1)如图1中,过点E作ETAB利用平行线的性质解决问题(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解

27、即可(3)利用(1)中结论,可得BMD=ABM+CDM,BFD=ABF+CDF,由此解决问题即可【详解】解:(1)证明:如图1中,过点E作ETAB由平移可得ABCD,ABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET+DET=B+D(2)如图2-1中,当点E在CA的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=DET-BET=D-B如图2-2中,当点E在AC的延长线上时,过点E作ETABABET,ABCD,ETCDAB,B=BET,TED=D,BED=BET-DET=B-D(3)如图,设ABE=EBM=x,CDE=EDM=y

28、,ABCD,BMD=ABM+CDM,m=2x+2y,x+y=m,BFD=ABF+CDF,ABE=nEBF,CDE=nEDF,BFD=【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型三、解答题11(1);(2)或;秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)当时,分两种情况,当在和之间,当在和之间,由,计算出的运动时间解析:(1);(2)或;秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)当时

29、,分两种情况,当在和之间,当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数;根据题意可知,当时,分三种情况,射线由逆时针转动,根据题意可知,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论;射线垂直时,再顺时针向运动时,根据题意可知,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案;射线垂直时,再顺时针向运动时,根据题意可知,根据(1)中结论,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论【详解】解:(1)延长与相交于点,如图1,;(2)如图2,射线运动的时间(秒,射线旋转的角度,又,;如图3所示,射线运动的时间

30、(秒,射线旋转的角度,又,;的度数为或;当由运动如图4时,与相交于点,根据题意可知,经过秒,又,解得(秒;当运动到,再由运动到如图5时,与相交于点,根据题意可知,经过秒,运动的度数可得,解得;当由运动如图6时,根据题意可知,经过秒,又,解得(秒),当的值为秒或或秒时,【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键12(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF解析:(1)2;(2)EFPQ,见解析;(3)NEFAMP,见解析【分析】

31、1)如图,过点P作PRAB,可得ABCDPR,进而可得结论;(2)根据已知条件可得2EPQ+2PEF180,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得QNEQEN,根据三角形内角和定理可得QNE(180NQE)(1803),可得NEF180QEFNQEQNE,进而可得结论【详解】解:(1)如图,过点P作PRAB,ABCD,ABCDPR,AMPMPR,PQNRPQ,MPQMPR+RPQ2;(2)如图,EFPQ,理由如下:PQ平分MPNMPQNPQ2,QEPN,EQPNPQ2,EPQEQP2,EF平分PEQ,PEQ2PEF2QEF,EPQ+EQP+PEQ180,2EPQ+2PEF

32、180,EPQ+PEF90,PFE1809090,EFPQ;(3)如图,NEFAMP,理由如下:由(2)可知:EQP2,EFQ90,QEF902,PQN,NQEPQN+EQP3,NE平分PNQ,PNEQNE,QEPN,QENPNE,QNEQEN,NQE3,QNE(180NQE)(1803),NEF180QEFNQEQNE180(902)3(1803)18090+2390+AMPNEFAMP【点睛】本题考查了平行线的性质,角平分线的性质,熟悉相关性质是解题的关键13(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由

33、平行线的性质得2ABD180,1解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性

34、质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键14(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过解析:(1)见解析;(2);见解析;(3)【分析】(1)过点作,根据平行线性质可得;(2)由(1)结论可得:,再根据角平分线性质可得;(3)由()结论可得:【详解】(1)证明:如图1,过点作,又,;(2)如图2,由(1)可得:,的平分线与的平分线相交于点,;(3)由()可得:,;【点睛】考核知识点:平

35、行线性质和判定的综合运用熟练运用平行线性质和判定是关键15探究 70;应用 35【分析】探究如图,根据ABCD,AEP=50,PFC=120,即可求EPF的度数应用如图所示,在探究的条件下,根据PEA的平分线解析:探究 70;应用 35【分析】探究如图,根据ABCD,AEP=50,PFC=120,即可求EPF的度数应用如图所示,在探究的条件下,根据PEA的平分线和PFC的平分线交于点G,可得G的度数【详解】解:探究如图,过点P作PMAB,MPE=AEP=50(两直线平行,内错角相等)ABCD(已知),PMCD(平行于同一条直线的两直线平行),PFC=MPF=120(两直线平行,内错角相等)EP

36、F=MPF-MPE=12050=70(等式的性质)答:EPF的度数为70;应用如图所示,EG是PEA的平分线,PG是PFC的平分线,AEG=AEP=25,GCF=PFC=60,过点G作GMAB,MGE=AEG=25(两直线平行,内错角相等)ABCD(已知),GMCD(平行于同一条直线的两直线平行),GFC=MGF=60(两直线平行,内错角相等)G=MGF-MGE=60-25=35答:G的度数是35故答案为:35【点睛】本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质四、解答题16(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解

37、【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出解析:(1)120;(2)EPF =AEP+CFP或AEP=EPF+CFP,证明见详解【分析】(1)根据题意,当点与点、在一直线上时,作出图形,由ABCD,FHP=60,可以推出=60,计算PFD即可;(2)根据点P是动点,分三种情况讨论:当点P在AB与CD之间时;当点P在AB上方时;当点P在CD下方时,分别求出AEP、EPF、CFP之间的关系即可【详解】(1)当点与点、在一直线上时,作图如下,ABCD,FHP=60,=FHP=60,EFD=180-GEP=180-60=120,PFD=120,故答案为

38、:120;(2)满足关系式为EPF =AEP+CFP或AEP=EPF+CFP证明:根据点P是动点,分三种情况讨论:当点P在AB与CD之间时,过点P作PQAB,如下图,ABCD,PQABCD,AEP=EPQ,CFP=FPQ,EPF=EPQ+FPQ=AEP+CFP,即EPF =AEP+CFP;当点P在AB上方时,如下图所示,AEP=EPF+EQP,ABCD,CFP=EQP,AEP=EPF+CFP;当点P在CD下方时,ABCD,AEP=EQF,EQF=EPF+CFP,AEP=EPF+CFP,综上所述,AEP、EPF、CFP之间满足的关系式为:EPF =AEP+CFP或AEP=EPF+CFP,故答案为

39、:EPF =AEP+CFP或AEP=EPF+CFP【点睛】本题考查了平行线的性质,外角的性质,掌握平行线的性质是解题的关键,注意分情况讨论问题17(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,解析:(1)E、CAF;CDE、BAF; (2)20;30【分析】(1)由翻折的性质和平行线的性质即可得与B相等的角;由等角代换即可得与C相等的角;(2)由三角形内角和定理可得,再由根据角的和差计算即可得C的度数,进而得B的度数根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出FDE、DFE的度数,分三种情况讨论求出符合题意的x值即可【详解】(1)由翻折的性质可得:EB,BAC90,AEBC,DFE90,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服