资源描述
2022年人教版中学七7年级下册数学期末解答题培优含答案
一、解答题
1.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.
(1)基础巩固:拼成的大正方形的面积为______,边长为______;
(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;
(3)变式拓展:
①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;
②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.
2.如图是一块正方形纸片.
(1)如图1,若正方形纸片的面积为1dm2,则此正方形的对角线AC的长为 dm.
(2)若一圆的面积与这个正方形的面积都是2πcm2,设圆的周长为C圆,正方形的周长为C正,则C圆 C正(填“=”或“<”或“>”号)
(3)如图2,若正方形的面积为16cm2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?
3.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.
(1)求正方形工料的边长;
(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数据:,)
4.如图,这是由8个同样大小的立方体组成的魔方,体积为64.
(1)求出这个魔方的棱长;
(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长.
5.如图用两个边长为cm的小正方形纸片拼成一个大的正方形纸片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长方形纸片长宽之比为,且面积为cm2?请说明理由.
二、解答题
6.已知,AB∥CD,点E为射线FG上一点.
(1)如图1,若∠EAF=25°,∠EDG=45°,则∠AED= .
(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;
(3)如图3,当点E在FG延长线上时,DP平分∠EDC,∠AED=32°,∠P=30°,求∠EKD的度数.
7.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.
(1)当时,的度数是_______;
(2)当,求的度数(用的代数式表示);
(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.
(4)当点运动到使时,请直接写出的度数.
8.如图,已知直线射线,.是射线上一动点,过点作交射线于点,连接.作,交直线于点,平分.
(1)若点,,都在点的右侧.
①求的度数;
②若,求的度数.(不能使用“三角形的内角和是”直接解题)
(2)在点的运动过程中,是否存在这样的偕形,使?若存在,直接写出的度数;若不存在.请说明理由.
9.已知:AB∥CD,截线MN分别交AB、CD于点M、N.
(1)如图①,点B在线段MN上,设∠EBM=α°,∠DNM=β°,且满足+(β﹣60)2=0,求∠BEM的度数;
(2)如图②,在(1)的条件下,射线DF平分∠CDE,且交线段BE的延长线于点F;请写出∠DEF与∠CDF之间的数量关系,并说明理由;
(3)如图③,当点P在射线NT上运动时,∠DCP与∠BMT的平分线交于点Q,则∠Q与∠CPM的比值为 (直接写出答案).
10.问题情境:
(1)如图1,,,.求度数.小颖同学的解题思路是:如图2,过点作,请你接着完成解答.
问题迁移:
(2)如图3,,点在射线上运动,当点在、两点之间运动时,,.试判断、、之间有何数量关系?(提示:过点作),请说明理由;
(3)在(2)的条件下,如果点在、两点外侧运动时(点与点、、三点不重合),请你猜想、、之间的数量关系并证明.
三、解答题
11.为了安全起见在某段铁路两旁安置了两座可旋转探照灯.如图1所示,灯射线从开始顺时针旋转至便立即回转,灯射线从开始顺时针旋转至便立即回转,两灯不停交又照射巡视.若灯转动的速度是每秒2度,灯转动的速度是每秒1度.假定主道路是平行的,即,且.
(1)填空:_________;
(2)若灯射线先转动30秒,灯射线才开始转动,在灯射线到达之前,灯转动几秒,两灯的光束互相平行?
(3)如图2,若两灯同时转动,在灯射线到达之前.若射出的光束交于点,过作交于点,且,则在转动过程中,请探究与的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.
12.如图1,E点在上,..
(1)求证:
(2)如图2,平分,与的平分线交于H点,若比大,求的度数.
(3)保持(2)中所求的的度数不变,如图3,平分平分,作,则的度数是否改变?若不变,请直接写出答案;若改变,请说明理由.
13.如图1所示:点E为BC上一点,∠A=∠D,AB∥CD
(1)直接写出∠ACB与∠BED的数量关系;
(2)如图2,AB∥CD,BG平分∠ABE,BG的反向延长线与∠EDF的平分线交于H点,若∠DEB比∠GHD大60°,求∠DEB 的度数;
(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不发生变化,请求它的度数,若发生改变,请说明理由.(本题中的角均为大于0°且小于180°的角).
14.已知两条直线l1,l2,l1∥l2,点A,B在直线l1上,点A在点B的左边,点C,D在直线l2上,且满足.
(1)如图①,求证:AD∥BC;
(2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分∠CAD;
(Ⅰ)如图②,当时,求∠DAM的度数;
(Ⅱ)如图③,当时,求∠ACD的度数.
15.综合与探究
综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,,且,三角形是直角三角形,,,
操作发现:
(1)如图1.,求的度数;
(2)如图2.创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由.
实践探究:
(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由.
四、解答题
16.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
17.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
18.如图,平分,平分,
请判断与的位置关系并说明理由;
如图,当且与的位置关系保持不变,移动直角顶点,使,当直角顶点点移动时,问与否存在确定的数量关系?并说明理由.
如图,为线段上一定点,点为直线上一动点且与的位置关系保持不变,①当点在射线上运动时(点除外),与有何数量关系?猜想结论并说明理由.②当点在射线的反向延长线上运动时(点除外),与有何数量关系?直接写出猜想结论,不需说明理由.
19.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.
(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;
(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为: ;
(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.
(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为: .
20.如图,已知直线a∥b,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧,线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.问∠1的度数与∠EPB的度数又怎样的关系?
(特殊化)
(1)当∠1=40°,交点P在直线a、直线b之间,求∠EPB的度数;
(2)当∠1=70°,求∠EPB的度数;
(一般化)
(3)当∠1=n°,求∠EPB的度数(直接用含n的代数式表示).
【参考答案】
一、解答题
1.(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实
解析:(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实数与数轴的关系可得结果;
(3)以2×3的长方形的对角线为边长即可画出图形;
(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.
【详解】
解:(1)∵图1中有10个小正方形,
∴面积为10,边长AD为;
(2)∵BC=,点B表示的数为-1,
∴BE=,
∴点E表示的数为;
(3)①如图所示:
②∵正方形面积为13,
∴边长为,
如图,点E表示面积为13的正方形边长.
【点睛】
本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.
2.(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采
解析:(1);(2)<;(3)不能;理由见解析.
【分析】
(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;
(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;
(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.
【详解】
解:(1)由已知AB2=1,则AB=1,
由勾股定理,AC=;
故答案为:.
(2)由圆面积公式,可得圆半径为,周长为,正方形周长为4.
;即C圆<C正;
故答案为:<
(3)不能;
由已知设长方形长和宽为3xcm和2xcm
∴长方形面积为:2x•3x=12
解得x=
∴长方形长边为3>4
∴他不能裁出.
【点睛】
本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.
3.(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(
解析:(1)6分米;(2)满足.
【分析】
(1)由正方形面积可知,求出的值即可;
(2)设长方形的长宽分别为4a分米、3a分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.
【详解】
解:(1)正方形工料的边长为分米;
(2)设长方形的长为4a分米,则宽为3a分米.
则,
解得:,
长为,宽为
∴满足要求.
【点睛】
本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.
4.(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
解析:(1)棱长为4;(2)边长为:(或)
【分析】
(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.
【详解】
解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.
(2)因为正方体的棱长为4,所以AB=.
【点睛】
本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.
5.不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸
解析:不能截得长宽之比为,且面积为cm2的长方形纸片,见解析
【分析】
根据拼图求出大正方形的边长,再根据长方形的长、宽之比为3:2,计算长方形的长与宽进行验证即可.
【详解】
解:不能,
因为大正方形纸片的面积为()2+()2=36(cm2),
所以大正方形的边长为6cm,
设截出的长方形的长为3b cm,宽为2b cm,
则6b2=30,
所以b=(取正值),
所以3b=3=>,
所以不能截得长宽之比为3:2,且面积为30cm2的长方形纸片.
【点睛】
本题考查了算术平方根,理解算术平方根的意义是正确解答的关键.
二、解答题
6.(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线
解析:(1)70°;(2),证明见解析;(3)122°
【分析】
(1)过作,根据平行线的性质得到,,即可求得;
(2)过过作,根据平行线的性质得到,,即;
(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求.
【详解】
解:(1)过作,
,
,
,,
,
故答案为:;
(2).
理由如下:
过作,
,
,
,,
,,
;
(3),
设,则,
,,
又,,
,
平分,
,
,
,
即,解得,
,
.
【点睛】
本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键.
7.(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠
解析:(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;
(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;
(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.
【详解】
解:(1)∵AM∥BN,∠A=60°,
∴∠A+∠ABN=180°,
∴∠ABN=120°;
(2)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-x°,
∴∠ABP+∠PBN=180°-x°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=180°-x°,
∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;
(3)不变,∠ADB:∠APB=.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1,
∴∠ADB:∠APB=;
(4)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠ABC,∠PBN=2∠DBN,
∴∠ABP=∠PBN=2∠DBN=∠ABN,
∵AM∥BN,
∴∠A+∠ABN=180°,
∴∠A+∠ABN=90°,
∴∠A+2∠DBN=90°,
∴∠A+∠DBN=(∠A+2∠DBN)=45°.
【点睛】
本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.
8.(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°
解析:(1)①35°;(2)55°;(2)存在,或
【分析】
(1)①依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
②依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=20°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=60°;
(2)设∠EGC=3x,∠EFC=2x,则∠GCF=3x-2x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)①∵AB∥CD,
∴∠CEB+∠ECQ=180°,
∵∠CEB=110°,
∴∠ECQ=70°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=35°;
②∵AB∥CD,
∴∠QCG=∠EGC,
∵∠QCG+∠ECG=∠ECQ=70°,
∴∠EGC+∠ECG=70°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=50°,∠ECG=20°,
∴∠ECG=∠GCF=20°,∠PCF=∠PCQ=(70°−40°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=∠ECQ-∠PCQ=70°-15°=55°.
(2)52.5°或7.5°,
设∠EGC=3x°,∠EFC=2x°,
①当点G、F在点E的右侧时,
∵AB∥CD,
∴∠QCG=∠EGC=3x°,∠QCF=∠EFC=2x°,
则∠GCF=∠QCG-∠QCF=3x°-2x°=x°,
∴∠PCF=∠PCQ=∠FCQ=∠EFC=x°,
则∠ECG=∠GCF=∠PCF=∠PCD=x°,
∵∠ECD=70°,
∴4x=70°,解得x=17.5°,
∴∠CPQ=3x=52.5°;
②当点G、F在点E的左侧时,反向延长CD到H,
∵∠EGC=3x°,∠EFC=2x°,
∴∠GCH=∠EGC=3x°,∠FCH=∠EFC=2x°,
∴∠ECG=∠GCF=∠GCH-∠FCH=x°,
∵∠CGF=180°-3x°,∠GCQ=70°+x°,
∴180-3x=70+x,
解得x=27.5,
∴∠FCQ=∠ECF+∠ECQ=27.5°×2+70°=125°,
∴∠PCQ=∠FCQ=62.5°,
∴∠CPQ=∠ECP=62.5°-55°=7.5°,
【点睛】
本题主要考查了平行线的性质,掌握两直线平行,同旁内角互补;两直线平行,内错角相等是解题的关键.
9.(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行
解析:(1)30°;(2)∠DEF+2∠CDF=150°,理由见解析;(3)
【分析】
(1)由非负性可求α,β的值,由平行线的性质和外角性质可求解;
(2)过点E作直线EH∥AB,由角平分线的性质和平行线的性质可求∠DEF=180°﹣30°﹣2x°=150°﹣2x°,由角的数量可求解;
(3)由平行线的性质和外角性质可求∠PMB=2∠Q+∠PCD,∠CPM=2∠Q,即可求解.
【详解】
解:(1)∵+(β﹣60)2=0,
∴α=30,β=60,
∵AB∥CD,
∴∠AMN=∠MND=60°,
∵∠AMN=∠B+∠BEM=60°,
∴∠BEM=60°﹣30°=30°;
(2)∠DEF+2∠CDF=150°.
理由如下:过点E作直线EH∥AB,
∵DF平分∠CDE,
∴设∠CDF=∠EDF=x°;
∵EH∥AB,
∴∠DEH=∠EDC=2x°,
∴∠DEF=180°﹣30°﹣2x°=150°﹣2x°;
∴∠DEF=150°﹣2∠CDF,
即∠DEF+2∠CDF=150°;
(3)如图3,设MQ与CD交于点E,
∵MQ平分∠BMT,QC平分∠DCP,
∴∠BMT=2∠PMQ,∠DCP=2∠DCQ,
∵AB∥CD,
∴∠BME=∠MEC,∠BMP=∠PND,
∵∠MEC=∠Q+∠DCQ,
∴2∠MEC=2∠Q+2∠DCQ,
∴∠PMB=2∠Q+∠PCD,
∵∠PND=∠PCD+∠CPM=∠PMB,
∴∠CPM=2∠Q,
∴∠Q与∠CPM的比值为,
故答案为:.
【点睛】
本题主要考查了平行线的性质、角平分线的性质,准确计算是解题的关键.
10.(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=
解析:(1)见解析;(2),理由见解析;(3)①当在延长线时(点不与点重合),;②当在之间时(点不与点,重合),.理由见解析
【分析】
(1)过P作PE∥AB,构造同旁内角,利用平行线性质,可得∠APC=113°;
(2)过过作交于,,推出,根据平行线的性质得出,即可得出答案;
(3)画出图形(分两种情况:①点P在BA的延长线上,②当在之间时(点不与点,重合)),根据平行线的性质即可得出答案.
【详解】
解:(1)过作,
,
,
,,
,
,,
;
(2),理由如下:
如图3,过作交于,
,
,
,,
,,
又
;
(3)①当在延长线时(点不与点重合),;
理由:如图4,过作交于,
,
,
,,
,,
,
又,
;
②当在之间时(点不与点,重合),.
理由:如图5,过作交于,
,
,
,,
,,
,
又
.
【点睛】
本题考查了平行线的性质的应用,主要考查学生的推理能力,解决问题的关键是作辅助线构造内错角以及同旁内角.
三、解答题
11.(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,
解析:(1)72°;(2)30秒或110秒;(3)不变,∠BAC=2∠BCD
【分析】
(1)根据∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,即可得到∠BAN的度数;
(2)设A灯转动t秒,两灯的光束互相平行,分两种情况进行讨论:当0<t<90时,根据2t=1•(30+t),可得 t=30;当90<t<150时,根据1•(30+t)+(2t-180)=180,可得t=110;
(3)设灯A射线转动时间为t秒,根据∠BAC=2t-108°,∠BCD=126°-∠BCA=t-54°,即可得出∠BAC:∠BCD=2:1,据此可得∠BAC和∠BCD关系不会变化.
【详解】
解:(1)∵∠BAM+∠BAN=180°,∠BAM:∠BAN=3:2,
∴∠BAN=180°×=72°,
故答案为:72;
(2)设A灯转动t秒,两灯的光束互相平行,
①当0<t<90时,如图1,
∵PQ∥MN,
∴∠PBD=∠BDA,
∵AC∥BD,
∴∠CAM=∠BDA,
∴∠CAM=∠PBD
∴2t=1•(30+t),
解得 t=30;
②当90<t<150时,如图2,
∵PQ∥MN,
∴∠PBD+∠BDA=180°,
∵AC∥BD,
∴∠CAN=∠BDA
∴∠PBD+∠CAN=180°
∴1•(30+t)+(2t-180)=180,
解得 t=110,
综上所述,当t=30秒或110秒时,两灯的光束互相平行;
(3)∠BAC和∠BCD关系不会变化.
理由:设灯A射线转动时间为t秒,
∵∠CAN=180°-2t,
∴∠BAC=72°-(180°-2t)=2t-108°,
又∵∠ABC=108°-t,
∴∠BCA=180°-∠ABC-∠BAC=180°-t,而∠ACD=126°,
∴∠BCD=126°-∠BCA=126°-(180°-t)=t-54°,
∴∠BAC:∠BCD=2:1,
即∠BAC=2∠BCD,
∴∠BAC和∠BCD关系不会变化.
【点睛】
本题主要考查了平行线的性质以及角的和差关系的运用,解决问题的关键是运用分类思想进行求解,解题时注意:两直线平行,内错角相等;两直线平行,同旁内角互补.
12.(1)见解析;(2)100°;(3)不变,40°
【分析】
(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论;
(2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再
解析:(1)见解析;(2)100°;(3)不变,40°
【分析】
(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论;
(2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再根据比大,列出等式即可求的度数;
(3)如图3,过点作,设直线和直线相交于点,根据平行线的性质和角平分线定义可求的度数.
【详解】
解:(1)证明:如图1,延长交于点,
,,
,
,
,
,
,
;
(2)如图2,作,,
,
,
,,
平分,
,
,
,
,
,
,
平分,
,
,
,
,
设,
,
比大,
,
解得
的度数为;
(3)的度数不变,理由如下:
如图3,过点作,设直线和直线相交于点,
平分,平分,
,
,
,,
,
,
,
,
由(2)可知:,
,
,
,
,
,
.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质.
13.(1) ;(2) ;(3)不发生变化,理由见解析
【分析】
(1)如图1,延长DE交AB于点F,根据平行线的性质推出;
(2)如图2,过点E作ES∥AB,过点H作HT∥AB,根据AB∥CD,AB∥E
解析:(1) ;(2) ;(3)不发生变化,理由见解析
【分析】
(1)如图1,延长DE交AB于点F,根据平行线的性质推出;
(2)如图2,过点E作ES∥AB,过点H作HT∥AB,根据AB∥CD,AB∥ES推出,再根据AB∥TH,AB∥CD推出,最后根据比大得出的度数;
(3)如图3,过点E作EQ∥DN,根据得出的度数,根据条件再逐步求出的度数.
【详解】
(1)如答图1所示,延长DE交AB于点F.
AB∥CD,所以,
又因为,所以,所以AC∥DF,所以.
因为,所以.
(2)如答图2所示,过点E作ES∥AB,过点H作HT∥AB.
设,,
因为AB∥CD,AB∥ES,所以,,
所以,
因为AB∥TH,AB∥CD,所以,,所以,
因为比大,所以,所以,所以,所以
(3)不发生变化
如答图3所示,过点E作EQ∥DN.
设,,
由(2)易知,所以,所以,
所以,
所以.
【点睛】
本题考查了平行线的性质,求角的度数,正确作出相关的辅助线,根据条件逐步求出角度的度数是解题的关键.
14.(1)证明见解析;(2)(Ⅰ);(Ⅱ).
【分析】
(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;
(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得
解析:(1)证明见解析;(2)(Ⅰ);(Ⅱ).
【分析】
(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;
(2)(Ⅰ)先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;
(Ⅱ)设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得.
【详解】
(1),
,
又,
,
;
(2)(Ⅰ),
,
,
,
由(1)已得:,
,
;
(Ⅱ)设,则,
平分,
,
,
,
,
由(1)已得:,
,即,
解得,
,
又,
.
【点睛】
本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键.
15.(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠
解析:(1);(2)理由见解析;(3),理由见解析.
【分析】
(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;
(2)过点B作BD∥a.由平行线的性质得∠2+∠ABD=180°,∠1=∠DBC,则∠ABD=∠ABC−∠DBC=60°−∠1,进而得出结论;
(3)过点C 作CP∥a,由角平分线定义得∠CAM=∠BAC=30°,∠BAM=2∠BAC=60°,由平行线的性质得∠1=∠BAM=60°,∠PCA=∠CAM=30°,∠2=∠BCP=60°,即可得出结论.
【详解】
解:(1)如图1 ,,
,
,
;
图1
(2)理由如下:如图2. 过点作,
图2
,
,
,
,
,
,
;
(3),
图3
理由如下:如图3,过点作,
平分,
,
,
又,
,
,
,
,
又 ,
,
.
【点睛】
本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.
四、解答题
16.(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,
解析:(1)∠E、∠CAF;∠CDE、∠BAF; (2)①20°;②30
【分析】
(1)由翻折的性质和平行线的性质即可得与∠B相等的角;由等角代换即可得与∠C相等的角;
(2)①由三角形内角和定理可得,再由根据角的和差计算即可得∠C的度数,进而得∠B的度数.
②根据翻折的性质和三角形外角及三角形内角和定理,用含x的代数式表示出∠FDE、∠DFE的度数,分三种情况讨论求出符合题意的x值即可.
【详解】
(1)由翻折的性质可得:∠E=∠B,
∵∠BAC=90°,AE⊥BC,
∴∠DFE=90°,
∴180°-∠BAC=180°-∠DFE=90°,
即:∠B+∠C=∠E+∠FDE=90°,
∴∠C=∠FDE,
∴AC∥DE,
∴∠CAF=∠E,
∴∠CAF=∠E=∠B
故与∠B相等的角有∠CAF和∠E;
∵∠BAC=90°,AE⊥BC,
∴∠BAF+∠CAF=90°, ∠CFA=180°-(∠CAF+∠C)=90°
∴∠BAF+∠CAF=∠CAF+∠C=90°
∴∠BAF=∠C
又AC∥DE,
∴∠C=∠CDE,
∴故与∠C相等的角有∠CDE、∠BAF;
(2)①∵
∴
又∵,
∴∠C=70°,∠B=20°;
②∵∠BAD=x°, ∠B=20°则,,
由翻折可知:∵, ,
∴, ,
当∠FDE=∠DFE时,, 解得:;
当∠FDE=∠E时,,解得:(因为0<x≤45,故舍去);
当∠DFE=∠E时,,解得:(因为0<x≤45,故舍去);
综上所述,存在这样的x的值,使得△DEF中有两个角相等.且.
【点睛】
本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.
17.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
18.(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.
【详解】
试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再
解析:(1)详见解析;(2)∠BAE+∠MCD=90°,理由详见解析;(3)详见解析.
【详解】
试题分析:(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出结论;
(2)过E作EF∥AB,根据平行线的性质可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出结论;
(3)根
展开阅读全文