1、人教版中学七年级下册数学期末综合复习卷附答案一、选择题1下列图形中,和不是内错角的是( )ABCD2下列各组图形可以通过平移互相得到的是()ABCD3若点在第四象限,则点在( )A第一象限B第二象限C第三象限D第四象限4下列说法中,错误的个数为( )两条不相交的直线叫做平行线;过一点有且只有一条直线与已知直线平行;在同一平面内不平行的两条线段一定相交;两条直线与第三条直线相交,那么这两条直线也相交A1个B2个C3个D4个5如图,已知,平分,平分,则下列判断:;平分;中,正确的有( )A1个B2个C3个D4个6下列说法中正确的是()A的平方根是B的算术平方根是C与相等D的立方根是7如图,将一张长
2、方形纸片沿折叠使顶点,分别落在点,处,交于点,若,则( )ABCD8如图,在平面直角坐标系中,A(1,1),B(1,1),C(1,2),D(1,2)把一条长为2017个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按ABCDA的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A(1,0)B(1,2)C(1,1)D(1,1)九、填空题9计算:=_十、填空题10点关于轴的对称点的坐标为_十一、填空题11如图,已知在四边形ABCD中,A=,C=,BF,DP为四边形ABCD的ABC、ADC相邻外角的角平分线当、满足条件_时,BFDP十二、填空题12如图,ABC与D
3、EF的边BC与DE相交于点G,且BA/DE,BC/EF,如果B=54,那么E=_十三、填空题13将一张长方形纸条折成如图的形状,已知,则_十四、填空题14若,是从0,1,2,这三个数中取值的一列数,则在,中,取值为2的个数为_十五、填空题15在平面直角坐标系中,若点在第二象限,则的取值范围为_十六、填空题16如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点A出发,沿着ABCDAB.路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为_十七、解答题17计算:(1)|2|+2;(2)已知(x2)2=16,求x的值十八、解答题18求下列各式中实数的x值(1)25x2360(2)|
4、x+2|十九、解答题19如图,三角形中,点,分别是,上的点,且,(1)求证:;(完成以下填空)证明:(已知)(_),又(已知)(等量代换),(_)(2)与的平分线交于点,交于点,若,则_;已知,求(用含的式子表示)二十、解答题20在平面直角坐标系中有三个点、B(5,1)、,是的边上任意一点,经平移后得到,点的对应点为,(1)点到轴的距离是 个单位长度;(2)画出和;(3)求的面积二十一、解答题21数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它
5、的小数部分,张老师夸奖小明真聪明,肯定了他的说法现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来(2)a为的小数部分,b为的整数部分,求的值(3)已知8+=x+y,其中x是一个正整数,0y1,求的值二十二、解答题22如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长二十三、解答题23已知,ABCD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,AGHFED,FEHE,垂足为E(1)如图1,求证:HGHE;(2)如图2,GM平分HGB,EM平分HED,GM,EM交于点
6、M,求证:GHE2GME;(3)如图3,在(2)的条件下,FK平分AFE交CD于点K,若KFE:MGH13:5,求HED的度数二十四、解答题24综合与探究综合与实践课上,同学们以“一个含角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线,且,三角形是直角三角形,操作发现:(1)如图1,求的度数;(2)如图2创新小组的同学把直线向上平移,并把的位置改变,发现,请说明理由实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由二十五、解答题25如图,将一副直角三角板放在同一条直线AB上,其中
7、ONM30,OCD45(1)将图中的三角板OMN沿BA的方向平移至图的位置,MN与CD相交于点E,求CEN的度数;(2)将图中的三角板OMN绕点O按逆时针方向旋转,使BON30,如图,MN与CD相交于点E,求CEN的度数;(3)将图中的三角板OMN绕点O按每秒30的速度按逆时针方向旋转一周,在旋转的过程中,在第_秒时,直线MN恰好与直线CD垂直(直接写出结果)【参考答案】一、选择题1B解析:B【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角解答【详解】解:A、1和2是内错角,故选项不合题意;B、1和2
8、不是内错角,故选项符合题意;C、1和2是内错角,故选项不合题意;D、1和2是内错角,故选项不合题意;故选B【点睛】本题考查了“三线八角”问题,确定三线八角的关键是从截线入手对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义2B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故解析:B【分析】根据平移的定义逐项分析判断即可【详解】解:A、不能通过平移得到,故本选项错误;B、能通过平移得到,故本选项
9、正确;C、不能通过平移得到,故本选项错误;D、不能通过平移得到,故本选项错误故选:B【点睛】本题考查了图形的平移,正确掌握平移的定义和性质是解题关键3A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置【详解】解:点P(a,b)在第四象限,a0,b0,-b0,点Q(-b,a)在第一象限故选:A【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键4D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案【详解】在同一平面内,两条不相交的直线叫做平行线,故本小题错误,过直线外一点有且只有一条直线与已知直线平行,故本小题错误,在同一平面
10、内不平行的两条直线一定相交;故本小题错误,两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误综上所述:错误的个数为4个故选D【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键5B【分析】根据平行线的性质求出,根据角平分线定义和平行线的性质求出,推出,再根据平行线的性质判断即可【详解】,正确;,平分,平分,根据已知不能推出,错误;错误;,正确;即正确的有个,故选:【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,能灵活运用平行线的性质和判定进行推理是解此题的关键6C【分析】根据平方根,立方根,算术平方根的定义解答即可【详解】A的平方根为,
11、故选项错误;B的算术平方根是,故选项错误;C,故选项正确;D的立方根是,故选项错误;故选:C【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键7B【分析】根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解【详解】解:在矩形纸片中,折叠,故选:B【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要8B【分析】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为
12、长方形解析:B【分析】根据点、的坐标可得出、的长度以及四边形为长方形,进而可求出长方形的周长,根据细线的缠绕方向以及细线的长度即可得出细线的另一端所在位置【详解】解:,且四边形为长方形,长方形的周长,细线的另一端落在点上,即故选:【点睛】本题考查了规律型中点的坐标、长方形的判定以及长方形的周长,根据长方形的周长结合细线的长度找出细线终点所在的位置是解题的关键九、填空题93【详解】试题分析:根据算术平方根的定义=3故答案是3考点:算术平方根解析:3【详解】试题分析:根据算术平方根的定义=3故答案是3考点:算术平方根十、填空题10【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】关于
13、y轴对称的点,纵坐标相同,横坐标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点解析:【分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数.【详解】关于y轴对称的点,纵坐标相同,横坐标互为相反数点关于y轴的对称点的坐标为.故答案为:【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.十一、填空题11=【详解】试题解析: 当BFDP时, 即: 整理得: 故答案为解析:=【详解】试题解析: 当BFDP时, 即: 整理得: 故答案为十二、填空题12126【分析】根据两直线平行同位角相等得到,结合邻补角的和180解题即可【详解】BA/DE,BC/EF,
14、B=54,故答案为:126【点睛】本题考查解析:126【分析】根据两直线平行同位角相等得到,结合邻补角的和180解题即可【详解】BA/DE,BC/EF,B=54,故答案为:126【点睛】本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键十三、填空题1355【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:解析:55【分析】依据平行线的性质以及折叠的性质,即可得到2的度数【详解】解:如图所示,ABCD,1BAD110,由折叠可得,2BAD11055,故答案为:55【点睛】本题主要考查了
15、平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等十四、填空题14508【分析】通过,是从0,1,2,这三个数中取值的一列数,从而得到1的个数,再由得到2的个数【详解】解:,又,是从0,1,2,这三个数中取值的一列数,中为解析:508【分析】通过,是从0,1,2,这三个数中取值的一列数,从而得到1的个数,再由得到2的个数【详解】解:,又,是从0,1,2,这三个数中取值的一列数,中为1的个数是20191510509,2的个数为(1525509)2508个故答案为:508【点睛】此题考查完全平方的性质,找出,中为1的个数是解决问题的关键十五、填空题15-1a3【分析】根据第二象限内点
16、的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可【详解】解:点P(a-3,a+1)在第二象限,解不等式得,a3,解不等式得,a解析:-1a3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可【详解】解:点P(a-3,a+1)在第二象限,解不等式得,a3,解不等式得,a-1,-1a3故答案为:-1a3【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16(2,2)【分析】由格点确定点A、B、C的坐标
17、,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020126164,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标【详解析:(2,2)【分析】由格点确定点A、B、C的坐标,从而得出AB、BC的长度,从而可找出爬行一圈的长度,再根据2020126164,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标【详解】解:A点坐标为(2,2),B点坐标为(3,2),C点坐标为(3,1),AB3(2)5,BC2(1)3,从ABCDAB一圈的长度为2(ABBC)162020126164,当蚂蚁爬了2020个单位时,它所处位置在点A右边4个单位长度处,即(2,2)故答案为:(2,2)【点
18、睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈十七、解答题17(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.十八、解答题18(1)x;(2)x2或x2+【分析】(1)先移项,
19、再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解【详解】解:(1)25x2360,25x2解析:(1)x;(2)x2或x2+【分析】(1)先移项,再将两边都除以25,再开平方即可求解;(2)根据绝对值的性质即可求解【详解】解:(1)25x2360,25x236,x2,x;(2)|x+2|,x+2,x2或x2+【点睛】本题主要考查了绝对值及平方根,注意一个正数的平方根有两个,它们互为相反数十九、解答题19(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和
20、定理即可解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2);【分析】(1)根据平行线的判定及性质即可证明;(2)由已知得,由(1)知,可得,在中,由对顶角得,由三角形内角和定理即可计算出;根据条件,可得,由,得出,通过等量代换得,由三角形内角和定理即可求出【详解】解:证明(1)证;证明:(已知),(两直线平行,同位角相等),又(已知)(等量代换),(同位角相等,两直线平行),故答案是:两直线平行,同位角相等;同位角相等,两直线平行(2)与的平分线交于点,交于点,且,由(1)知,在中,故答案是:;,由(1)知,在中,故答案是:【点睛】本题考查了平行线的判定及性质、角平分线的定义、
21、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解二十、解答题20(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B解析:(1)2;(2)见解析;(3)2.5【分析】(1)根据A点的纵坐标即可求解;(2)根据网格结构找出点A、B、C的位置,然后顺次连接即可,再根据点P、P1的坐标确定出变化规律,然后找出点A1、B1、C1的位置,然后顺次连接即可;(3)利用三角形所在的矩形的面积减去四周三个直角三角形的面积
22、,列式计算即可得解【详解】(1)点到轴的距离是2个单位长度故答案为:2;(2)如图,和为所求作(3)S6111.52.5【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键二十一、解答题21(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从
23、而求出x的值,代入求值即可【详解】解:(1)12的整数部分是1的小数部分是1;(2)12,23的整数部分是1,的整数部分是2的小数部分是1;a=1,b=2=1(3)的小数部分是1y=1x=8+(1)=9=19【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键二十二、解答题22(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案
24、;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键二十三、解答题23(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点H作HPAB,根据平行线的性质解答即可解析:(1)见解析;(2)见解析;(3)40【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HPAB,根据平行线的性质解答即可;(3)过点
25、H作HPAB,根据平行线的性质解答即可【详解】证明:(1)ABCD,AFEFED,AGHFED,AFEAGH,EFGH,FEH+H180,FEHE,FEH90,H180FEH90,HGHE;(2)过点M作MQAB,ABCD,MQCD,过点H作HPAB,ABCD,HPCD,GM平分HGB,BGMHGMBGH,EM平分HED,HEMDEMHED,MQAB,BGMGMQ,MQCD,QMEMED,GMEGMQ+QMEBGM+MED,HPAB,BGHGHP2BGM,HPCD,PHEHED2MED,GHEGHP+PHE2BGM+2MED2(BGM+MED),GHE2GME;(3)过点M作MQAB,过点H作
26、HPAB,由KFE:MGH13:5,设KFE13x,MGH5x,由(2)可知:BGH2MGH10x,AFE+BFE180,AFE18010x,FK平分AFE,AFKKFE AFE,即,解得:x5,BGH10x50,HPAB,HPCD,BGHGHP50,PHEHED,GHE90,PHEGHEGHP905040,HED40【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键二十四、解答题24(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1
27、解析:(1);(2)理由见解析;(3),理由见解析【分析】(1)由平角定义求出342,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2ABD180,1DBC,则ABDABCDBC601,进而得出结论;(3)过点C 作CPa,由角平分线定义得CAMBAC30,BAM2BAC60,由平行线的性质得1BAM60,PCACAM30,2BCP60,即可得出结论【详解】解:(1)如图1 ,;图1 (2)理由如下:如图2 过点作,图2 ,;(3),图3 理由如下:如图3,过点作,平分,又,又 ,【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线
28、定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键二十五、解答题25(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角解析:(1)105;(2)135;(3)5.5或11.5.【分析】(1)在CEN中,用三角形内角和定理即可求出;(2)由BON30,N=30可得MNCB,再根据两直线平行,同旁内角互补即可求出CEN的度数.(3)画出图形,求出在MNCD时的旋转角,再除以30即得结果.【详解】解:(1)在CEN中,CEN=180ECNCNE=
29、1804530=105;(2)BON30,N=30,BONN,MNCB.OCD+CEN=180,OCD=45CEN=18045=135;(3)如图,MNCD时,旋转角为360904560=165,或360(6045)=345,所以在第16530=5.5或34530=11.5秒时,直线MN恰好与直线CD垂直【点睛】本题以学生熟悉的三角板为载体,考查了三角形的内角和、平行线的判定和性质、垂直的定义和旋转的性质,前两小题难度不大,难点是第(3)小题,解题的关键是画出适合题意的几何图形,弄清求旋转角的思路和方法,本题的第一种情况是将旋转角DOM放在四边形DOMF中,用四边形内角和求解,第二种情况是用周角减去DOM的度数.