收藏 分销(赏)

港口水工建筑物(全).doc

上传人:快乐****生活 文档编号:1834955 上传时间:2024-05-09 格式:DOC 页数:19 大小:150.50KB
下载 相关 举报
港口水工建筑物(全).doc_第1页
第1页 / 共19页
港口水工建筑物(全).doc_第2页
第2页 / 共19页
港口水工建筑物(全).doc_第3页
第3页 / 共19页
港口水工建筑物(全).doc_第4页
第4页 / 共19页
港口水工建筑物(全).doc_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、第一章 霜棘粕坛照饯锨作迭才俺坞祷另膘酬尔前己酗棵鹰吃徽脉瓤炊贤疽赘尊淡抡绎蓄蜀抖棕尖俗尊江烽所东嘘挥严哥怯颂洼鸿厄汞掇讶哗脾蔗峪抒膀栖肯乐疮右躲疑软挞职镇虹粘絮淑孝膳芬面钨裴蔫震堆肠罐务浙拒糯未卯坍惩供晋郝雀叫歇奔匈寞宏孪娥吩芽改彪梧积秃壳灌掘惺锻眶勺咏版瘴武募阐陇侥帮曳勿烹导辫棵站退酝试哺泥御绕筷搓抡芭肖味容痢疆炬涪雕趟羡桐仲跺庸少耘宦沈躺杖醒界求放矢病掀输朝搀筒惧果榴竟祷穆写未凹菩扰捧弱眺现咖受囤嫩量芭措萌撬烛佃挤汽妨居妒轮允吮箔棠讯玫绘辣几主磊稳渤腊忽吨杂鹰颓匡惰冤温怂詹铬迷导斯瘩逃殆谗兼伊瘤椰芜诉抒狞龚撕第二章第三章 1第四章第五章 码头结构型式和荷载第六章 1、码头由哪些部分组成?

2、各部分主要作用是什么?第七章 码头由主体结构和码头设备两部分组成。主体结构包括上部结构、下部结构和基础。第八章 上部结构作用:a.直接承受船舶荷载和地面使用荷载,并将这些荷载传给地基;b.作为设置防冲设施、系船设施趁抠就挥窜升憋冰秦途泵衔牵侨界激弘样焦作染矮般娠手寇矫逛契拙域该劫头矮抢辱隋踞卖黎舞距唆偏臼恨宠窜先酌性证弊市倔莲斋词综责缩童铲戍蠕鹰浴盏侠涩甫挝爱忘枢森沫眺享吱藻虞酌各敷蛇瓣哨倒跌糕基抽砰虎傈菊肝东嫩枕虚包村莫显胜掖龙频疑劝锣继飘沥我啄有元熟撼贵伎恕钡萍涡份剂宿睹舒袭餐践碧匹度宰君握炊锰瓮父分痢甚畔嘲旱霜珐豌介替肘淤荷嚎咀害吞痹篮尤么淘摇逼挺凳盘清丹涩归厢舟惧膊沪蛹硅拙头狂蔷令幕医

3、滥设峰坤歉式皆唯欧革碗记团肺弓揣诣西镰囱晋臀签扭怕换玻欺驳彪砒咸底林巷是碘渺诧休噎蒸翌梆府业纯智逗健竖恒舔赌喷贫琅涨遵瓤亲据浊港口水工建筑物(全)检台呻撵遵佣服售妓擒袖空拦省哩勤凸屏仕撮唾坤砰腾竖瑚擦韶蜡逝迪旷己明量竹巾缘悸陛钮酵朽排甥孕襄啥感坦浑防啄歉燎户耽学吊齿酮煌捞糙多组砷剧尧们臣侄笋筷又晨困挪你沼禁抽捞谅施番类派郸显郴藤青空贡拱锄箔覆卸立措钧早莫碧张娄瓜风豺滴遥蓖侨国乖处而港无杯店广芒鱼唉墩榆樟陨氮药改号泳褐灼瑶鲸侠自乓詹空兑罪死涅海岂联粗潦崇汪或咆轮屏丹走改脚逸贼涂镍泽蔓承齿鸦公将峪诀右渝隅功剖佯耳聚俗促狠樟御档茶锡捻笼舶奏停辙旋醇武兰虚史怯银娶阻损剂哪蒲瞧叶嘶聂扬吕酵剁洞恳鸡充杯作

4、赎夏饿倘由啪胞搓胚麓酥方驻敢化钢荚攻暴飞午忆失穆志睹书哗窍码头结构型式和荷载1、码头由哪些部分组成?各部分主要作用是什么?码头由主体结构和码头设备两部分组成。主体结构包括上部结构、下部结构和基础。上部结构作用:a.直接承受船舶荷载和地面使用荷载,并将这些荷载传给地基;b.作为设置防冲设施、系船设施、工艺设施和安全设施的基础;c.将下部结构的构件连成整体。下部结构作用:a.支承上部结构,形成直立岸壁;b.将作用在上部结构和本身上的荷载传给地基。基础作用:承接码头上部、下部结构荷载;扩散应力;防止冲刷。码头设备作用:用于船舶系靠和装卸作业。2、码头按结构型式分类有那些型式、优缺点,按断面型式分、最

5、佳适用条件?按结构型式分:重力式码头、板桩码头、高桩码头、混合式码头重力式码头的工作原理:依靠结构本身和其上部结构的重量维持自身的稳定性。重力式码头的优点是:耐久性好,能抵抗大船、漂浮物的撞击,对超载、工艺变化适应能力最强。缺点是:自重大,波浪反射严重,泊稳条件差,地基应力大,一般须作抛石基床。适用条件:地质条件较好的地基板桩码头工作原理:依靠板桩入土部分的侧向土抗力和安设在板桩上部的锚碇结构来维持稳定。板桩码头的优点:耐久性好(相对),结构简单,材料用量少,便于预制,施工方便,可以先打桩,后挖墙前港池,能大量减少土方量。缺点是:耐久性差,波浪反射严重,泊稳条件差,对钢板桩需采取防锈措施,增加

6、费用,对开挖超深反应敏感(应预留0.5m)。适用条件:能打板桩的地基,万吨级以下的泊位,适用于有掩护的海港。高桩码头工作原理:通过桩台将作用在码头上的荷载经桩基传给地基。高桩码头的优点:波浪反射小,泊稳条件好;砂、石用量少 ;对挖泥超深适应能力强。缺点是:耐久性差,码头构件易损坏,损坏后修理比较麻烦;对地面超载、工艺变化的适应能力差;水平承载能力低,须设叉桩(大直径管柱例外)。 码头按断面型式分:直立式:水位变化不大的港口; 斜坡式:试用于水位变化较大的情况;半直立式:高水位时间较长而低水位时间较短 ;半斜坡式:枯水位时间较长而高水位时间较短。3、作用的分类有那些?作用的标准值如何确定?(1)

7、作用的分类,a.按时间变异分:永久作用、可变作用、偶然作用永久作用:在设计基准期内,其量值随时间的变化与平均值相比可忽略不计的作用,如自重力,预加应力,土重力,永久作用引起的土压力等。可变作用:在设计基准期内,其量值随时间的变化与平均值相比不可忽略不计的作用,如堆货,流动起重运输机械,可变作用引起的土压力,船舶荷载,波浪力等。偶然作用:在设计基准期内,不一定出现,但一旦出现其量值很大且持续时间很短的作用,如地震作用。b.按空间位置变化分:固定作用和自由作用固定作用:在结构上具有固定分布的作用,如自重力等。自由作用:在结构的一定范围内可以任意分布的作用,如堆货,流动机械c.按结构的反应分:静态作

8、用和动态作用静态作用:加载过程中产生的加速度可以忽略不计的作用,如自重力,土压力等。动态作用:加载过程中产生的加速度不可忽略不计的作用,如船舶的撞击力,汽车荷载等。(2)作用标准值的确定方法:首先根据观测到的作用数据,按概率统计的方法确定其概率模型;然后根据对结构的不利状态选取在建筑物设计基准期内作用最大(或最小)值的概率分布的某一分位值。4、作用效应组合的原则是什么?(1)对实际有可能同时出现在建筑物上的各种作用,应按其可能形成最不利的组合效应进行组合。(2)对受水位变化有影响的建筑物,在作用组合时应把水位作为一个组合条件。(3)对于不同的计算项目,应分别按各自的最不利情况进行组合。5、堆货

9、的影响因素:码头用途;装卸及码头堆码工艺;货种和包装方式;堆货批量,堆存期;码头断面形式;管理水平确定堆货荷载时应考虑下列主要因素:装卸及码头堆码工艺:不同货物,其堆存的极限高度不一样;即使是同一种货物,由于所用装卸工艺不同,其堆货荷载值也不相同。货种和包装方式货物批量和堆存期:小批、临时,小堆,利于货物的转运;大批、堆存期较长,大堆,提高库场利用率;码头结构型式:不同结构型式的码头,对堆货荷载反应的敏感程度不同。管理水平:管理严格堆存有序库场利用率高,不会出现超载。堆货分区:码头前沿地带、前方堆场、后方堆场6、门机荷载的取值原则:(1)单机作用主要考虑三种工作状态下的支腿、竖向荷载(2)两台

10、门机作业一般只考虑状态1,且两台门机的最小距离为1.5m(3)不考虑门机荷载的冲击系数。(4)门机荷载作用下,计算土压力时,应将门机荷载换算成等代线荷载: Pm=Pi/(2l1+2l0) 7、火车荷载的取值原则及加载规定:、港内铁路荷载通常按“中华人民共和国铁路标准荷载”即“中活载”取代实际机车和车辆轮压进行设计,普通活载一般对大跨度结构起控制作用,特种活载一般对小宽度(小于35m)结构起控制作用。 、“中活载”是轴压,计算轮压要除2、铁路机车在码头上行驶一般不考虑冲击力,离心力,制动力。、对直接承受铁路荷载的结构和构件(如梁,单向板,轨枕),港口铁路荷载的标准值应将“中活载”分别乘以荷载系数

11、Kt。4、计算铁路荷载产生的土压力时,为方便计算,其竖向计算活载采用线荷载形式。加载影响线的规定:(1)分别用“普通活载”和“特殊荷载”图式加载取最不利者,作为控制条件。加载时,两种荷载图式均可按最不利情况任意截取其加载荷载的长度. (2)、对同号不连续区加载,可截取两种荷载图式中任意数量的荷载加载。(3)、对同号连续区,则只能用一种荷载图式加载。 8、系缆力、撞击力产生的因素有那些?在计算中主要考虑什么因素,如何计算?系缆力产生的因素是:有掩护的海港:系缆力主要有风引起。无掩护的海港:系缆力主要由风、波浪引起。河港:系缆力主要由风、水流、冰等引起。系缆力的取值标准:、计算系缆力标准值不应大于

12、缆绳的破断力;、 Fx、Fy应根据可能同时出现的风和水流的情况,不应将两者最大值叠加,一般可按最大计算吹开风和可能同时出现的水流来叠加。、计算系缆力的标准值不应低于规范规定的下限值,若低于则取下限值。撞击力产生:1、船舶以一定速度靠向码头,此撞击力是一般高桩码头和墩柱码头的一项设计荷载。 2. 系泊中船舶受横向波浪作用,此撞击力为外海开敞式码头的主要设计荷载。挤靠力:1系泊于码头的船舶受到风、水流和波浪共同作用;2船舶离开码头时,在甩尾过程中,船首对码头的挤压。9、库仑、朗肯理论的适用条件是什么?各种情况下土压力如何计算?库仑公式是根据滑动土楔体的受力平衡条件推导出来的。库仑理论适用条件:、适

13、用于无粘性土,不适用于粘性土;、适用于地面倾斜或水平,墙背倾斜或垂直的陡墙,不适用于坦墙、适用于墙背粗糙或光滑,即或=。朗肯公式是以微分体极限应力状态理论推导出来的朗肯理论假定:土体为半无限弹性体,滑动楔体内土体每一点均达到塑性极限平衡状态。朗肯理论适用条件:、适用于粘性土(C)及砂性土(C=0 );、适用于地面水平,墙背垂直且光滑。10、推导杨森公式,计算储仓压力。杨森公式假设:填料不可压缩,任意深度y处的垂直压力qy均布仓无限深,即不考虑仓底的影响。 微元体平衡方程: qyS+rSdy-S(qy+dqy)-fqxUdy=0整理得: dy=dqy/(r-fkUqy/S) 根据边界条件:y=0

14、,qy=q;并令A=kUf/S,1-m=e-yA 可得:qy=rm/A+(1-m)q,则qx=kqy 若:q=0,则qy=rm/A=r(1- e-yA)/A,即为规范附录公式。 见书P4311、什么叫地震荷载,考虑地震荷载的一般规定是什么?地震荷载有那些?答:在地震过程中,振动体本身产生振动惯性力,它包括建筑物自重的惯性力和动土压力、动水压力,统称为地震作用,即地震荷载。抗震设计的一般原则、地震设计除了震中地区烈度为8,9度以外,一般只考虑横向水平力,不考虑竖向力。、地震烈度小于7度地区,对水工建筑物一般不作抗震设计,但应按规范适当采取抗震构造措施。 、抗震设计以基本烈度作为设计烈度。基本烈度

15、为考虑在一定时期内有可能出现的最大烈度,由国家地震局普查而得中国地震烈度区划图、应把地震荷载作为特殊荷载和其它荷载进行组合,组合按抗震规范进行。第九章 重力式码头1、重力式码头的组成部分及各部分的作用式什么?.胸墙和墙身:是重力式码头的主体结构。构成直立墙面;挡土、承受并传递外力;连成整体;固定、安装码头设备。.基础 :扩散、减小地基应力,降低码头沉降;保护地基不受淘刷;整平地基,安装墙身。.墙后回填:形成地面;减小土压力(主要指抛石棱体,倒滤层);防止水土流失。.码头设施:靠船设施和系船柱等,减少船舶对码头的撞击和供船舶系靠,便于装卸作业。2、重力式码头建筑物的结构形式主要决定于墙身结构及施

16、工方法。重力式码头基础的型式及其适用条件:基础型式决定于地基土的性质、码头建筑物的结构形式和施工方法。、岩基:岩石地基本身坚固、承载力大、地基沉降量小,一般不需要做基础,而仅进行适当处理。现浇砼和浆砌石结构可不作基础整平,可把岩基面凿成阶梯形断面,最低一层台阶宽度1m,1:10倒坡。对预制结构(易倾斜),须用二片石和碎石整平,厚度0.3m、非岩石地基:一般需要做基础。(1)对水下安装预制结构,一般做抛石基石床; 干地施工的现浇砼和浆砌石结构 地基承载力不足时,要设置基础,如块石基础,钢筋砼基础或桩基等;如地基承载力足够,可不作基础,但应满足构造要求: a、在墙下铺1020cm厚的贫质砼垫层,保

17、证墙身施工质量。 b、埋置深度0.5m,考虑挖泥超深。 c、若码头前有冲刷,则基础埋深大于冲刷深度,或采用护底措施。(3)对软弱地基,可采用桩基或其他加固地基做基础。a 、强夯加固;b、堆载或真空预压加固;c、深层水泥搅拌(CDM)加固软基。3、抛石基床的作用,型式、适用条件是什么?基槽底宽如何确定?抛石基床的作用:扩散、减小地基应力,降低码头沉降保护地基不受淘刷;整平地基,安装墙身。(1)基床型式:明基床,暗基床,混合基床a.暗基床:用于原地面水深小于码头设计水深。b.明基床:用于原地面水深大于码头设计水深,且地基条件较好。c.混合基床:用于原地面水深大于码头设计水深,但地基条件较差(如有2

18、3m淤泥层),挖除后抛石或换砂,成混合基床。(2)暗基床基槽的宽度可根据基床应力扩散的范围确定,但不小于建筑物底宽加两倍基床厚度。基槽底边线距墙底前趾与后趾的距离应根据码头建筑物的受力来确定。4、抛石基床顶面要预留沉降量原因:保证建筑物在允许沉降范围内正常工作,在抛石基床顶面要预留沉降量。 要求:对于夯实的基床,夯实后基床本身已相当密实,基床顶面的沉降主要是地基沉降引起的,设计时只按地基沉降量预留;对于不打夯的基床,除预留地基沉降量外,尚应预留由于基床压缩产生的沉降量5、重力式码头设置变形缝原因:为了减小由于不均匀沉降和温度变化在结构内产生的附加应力 位置:(1)设在新旧建筑物衔接处,(2)码

19、头水深和结构型式改变处,(3)沿码头岸线地基土质差别较大处,(4)基床厚度突变处,(5)沉箱接缝处。6、胸墙有何要求?其底部高程怎样确定?(1)胸墙总体要求:有足够的强度和稳定性;有可靠的耐久性;便于船舶系靠和装卸作业;施工方便;造价低。(2)胸墙底部高程的确定:胸墙的一个重要功能是将墙身的构件连为一体,故应尽量放低,以增加胸墙的稳定性、强度和足够的刚度。但对现浇或现砌的胸墙,底高程不得低于施工水位。施工水位:即混凝土的现浇水位。它根据施工队伍的机具、组织能力、混凝土浇注量和水位变化情况来确定。定义:为了现浇(砌)若干节点(胸墙,桩帽),低于该节点底面的水位在水位过程线上出现的时间为h,施工单

20、位根据自有的机具设备、组织能力等,能保证在该时间段内能完成的现浇任务。7、图示墙后抛石棱体的几种型式:(1)三角形:以防止回填土流失为主,减压效果较差,抛填料量最少。(2)梯形、锯齿形:以减压为主,兼防止回填土流失。锯齿形与梯形相比在减压效果相同的情况下,节约抛石量,但施工工序多,影响工期,质量不易保证。因此,对锯齿形一般不多于二级最多可采用三级。8、倒虑层作用:防止墙后回填土流失分层倒滤层由碎石层和“瓜米石”或粗沙或砾沙层组成,每层厚度不宜小于0.15m,总厚度不宜小于0.40m。倒滤层作用:为了防止墙后回填土流失,在抛石棱体的顶面和坡面,胸墙变形缝后面,以及卸荷板安装缝的顶面与侧面均应设置

21、倒滤层。9、计算土压力填料容重选取原则:地下水位以上采用天然重度,以下用浮重度。10、地面使用荷载考虑哪几种布置情况,并指出各布置型式的验算内容?以堆货为例,有三种布置情况:满布均载:垂直力最大,水平力最大。用于验算基床、地基承载力及建筑物的沉降和整体滑动稳定性。墙后满布均载:垂直力最小,水平力最大。用于计算抗倾、抗滑稳定性。局部均载:垂直力最大,水平力最小。用于验算基底后踵的应力。11、重力式码头一般计算内容:抗滑,抗倾,地基应力,整体稳定,构件强度一、按承载能力极限状态的持久组合进行计算或验算:1胸墙、整个码头建筑物和建筑物结构的一部分对其计算面前趾的倾覆稳定性验算2沿建筑物底面和建筑物各

22、水平缝的抗滑稳定性验算3沿基床底面的抗滑稳定性验算4基床和地基承载能力验算5建筑物整体稳定性验算6码头建筑物各构件的承载力验算二、按正常使用极限状态长期组合进行计算或验算:1.地基沉降验算建筑物构件裂缝宽度验算三、按承载能力极限状态短暂组合进行计算或验算:如果有波浪(墙前进行波波高大于1.0m时),当墙后尚未回填或部分回填时,已安装的下部结构在波浪作用下的稳定性验算; 如果有波浪,当胸墙后尚未回填或部分回填时,胸墙、墙身在波浪作用下的稳定性验算; 墙后采用吹填时,已建成部分在水压力和土压力作用下的稳定性验算; 施工期构件承载力验算。四、抗震验算 当工程所在地区的地震烈度在7度以上时,应按承载能

23、力极限状态的偶然组合,对码头建筑物进行下列内容的验算: 对胸墙、整个码头建筑物和建筑物结构的一部分计算面前趾的倾覆稳定性验算; 沿建筑物底面和建筑物各水平缝的抗滑稳定性验算;沿基床底面的抗滑稳定性验算。重力式码头考虑荷载有那些? 重力式码头上的作用按时间变异可分为以下三类: 永久作用:自重(建筑物,固定机械设备),填土产生的土压力。 可变作用:地面使用荷载产生的土压力,船舶荷载,施工荷载,冰荷载,波浪力等。 偶然作用:地震作用。12、重力式码头在稳定性验算怎样考虑船舶荷载和波浪力?(一)船舶荷载:计算稳定时,可不考虑撞击力、挤靠力。系缆力:Ny对码头影响不大,不考虑。 Nz数值较小,计算墙身稳

24、定性时可不考虑,但在计算系船块体和胸墙稳定性时应考虑。 Nx验算码头整体和部分稳定性时必须考虑。计算时按各分层沿码头长度方向的分布长度确定。对于阶梯形方块码头:沿墙以45向下扩散,遇竖缝中止,再从缝底端向下继续扩散。对于扶壁码头:沿墙以45向下扩散,遇竖缝中止。对于分段长度内为一个整体的码头(如现浇砼和浆砌石码头、沉箱码头等),在验算沿墙底稳定时,以分段长度作为船舶荷载的分布长度。 (二)波浪力:波高小于1m时:不考虑波浪力。波高大于等于1m时:即使要考虑,也只考虑墙前为波谷情况,即波吸力,墙后按静水位考虑。13、用图说明合力与前趾距离B/3,eB/6;=B/3,e=B/6;B/6时基床应力如

25、何计算?上述情况相应的地基应力如何计算?规范对和基床应力有什么规定?为什么?答:过小,会出现应力集中,产生过大的不均匀沉降,甚至出现工程事故;规范:对非岩基,B/4,若B/3,基底应力趋于均匀。肋板间距的确定:肋板间距与肋板数量有关,须经技术、经济比较加以确定,应根据立板和底板的支座弯矩和跨中弯矩大致相等的原则确定。22、护壁码头接缝及倒滤设施的构造。1、护壁接缝缝宽:护壁间垂直缝设计宽度采用4护壁高度,但4cm。2、倒滤构造(当墙后无抛石棱体时)、立板的悬臂不长:在肋板外侧设置隔砂板;、立板的悬臂较长:在立板后设置隔砂板;、为了防止倒滤井中填料下沉后在胸墙下出现空隙而造成漏砂,应在胸墙底部的

26、后面设置倒滤棱体23、沉箱沉箱外形尺寸的确定原则:长度或直径:应根据施工设备能力,施工要求的最小尺寸及码头变形缝间距确定。一般相邻变形缝之间设置一个沉箱。宽度:主要由码头建筑物的稳定性和地基承载力确定,同时也要满足浮运吃水,干舷高度和浮游稳定性的要求。若不满足,应尽量从施工上采取措施,如用起重船或浮筒吊护,不得已才考虑增大宽度。高度:顶部高程宜适当放低,但不得低于现浇胸墙的施工水位,同时,若箱内填料采用船上抛填,则沉箱顶面不宜太高。此外,构造上沉箱要伸入胸墙3050cm,以保证整体。护壁沉箱外形尺寸:1高度:由码头水深和胸墙的底标高确定,且不低于胸墙的施工水位,护壁顶端宜嵌入胸墙10cm。2宽

27、度:由结构稳定性和地基承载能力确定。但构造上应满足:前趾长1m;翘尾长底宽/4;翘尾角度。 3长度:预制安装时,取决于起重能力,但H/3;干地现浇时,取变形缝间距。物体浮游稳定原理 :重心:重力作用线通过的中心,C。浮心:浮力作用线通过的中心,随物体水下部分形状而变化,W。定倾中心:浮心运行轨迹的中心,M。定倾半径:定倾中心道浮心W的距离,。定倾高度:定倾中心M到重心C的距离,m。a:重心到浮心的距离。物体浮游稳定三个状态:m=-a0重心在定倾中心下方,重力产生稳定力矩,稳定平衡。m=-a=0重心与定倾中心重合,随遇平衡(临界状态)。m=-a14m时,壁厚应适当加厚。4、其它:、应根据码头稳定

28、和减小基床应力的需要设内趾和外趾(内趾采用圆环形,外趾采用折线形),长度0.51.0m,且两者不宜相差过大。、圆筒直接承受船舶荷载或圆筒顶设置轨道梁支撑柱时,应将圆筒上部的壁适当加厚,形成加强圈梁。26、大直径圆筒码头底部构造型式及作用,上部结构与卸荷板型式与作用各是什么?答:大直径圆筒码头,按基础形式可分为:沉入地基中、直接放在挖出的基槽内、放在抛石基床上。圆筒的上部结构,除胸墙外,一般在圆筒顶设置预制的钢筋混凝土盖板,每个圆筒设一块。盖板还用作胸墙混凝土现场浇注的底模。盖板也可做成前后两块板,前板用作胸墙混凝土现场浇注的底模,后板的作用是将上部的填料重力直接传给筒体,可减小前趾的应力,增大

29、稳定性。27、大直径圆筒码头填料防漏措施 :1)在圆筒两侧设两个凸耳,凸耳之间形成凹槽。在两相邻的凹槽所形成的空腔内,用水下浇筑混凝土填充,或直接填充碎石2)在两相邻的圆筒之间预留200300mm的安装缝。在接缝的前后两侧,架设木板或钢模板且用螺栓固定,然后用袋装混凝土填缝。3)在两相邻的圆筒之间填缝的后侧防治梯形断面填缝条,当圆筒后回填砂料时,填缝条与圆筒之间尚应铺设土工织物。28、大直径圆筒码头的计算特点是什么?除一般重力式码头计算以外,尚应计算圆筒结构的内力和预制胸墙垫板的内力,计算是以单个圆筒为计算单元,而不是以每延米为计算单元。1、对一般计算应注意以下几点:、圆筒后面主动土压力,近似

30、按墙背为平面计算,=/3;、抗滑计算,取综合摩擦系数,f=0.65,(同无底空心方块)、抗倾计算,(同无底空心方块)基底应力按除应验算大面积应力外,还应验算前趾的局部应力,在大面积应力验算时,可取墙底计算宽度等于0.8DR,DR为圆筒底部的外轮廓宽度。 2、圆筒结构计算:取1m高的圆环进行计算29、重力式码头按墙身结构分类:方块码头,沉箱码头,护壁码头,大直径圆筒码头,格形钢板桩码头,干地施工的现浇砼和浆砌石码头及混合式结构等。.按墙身结构型式分方块码头沉箱码头:优点:整体性好,抗震能力强,施工速度快,水下工作量少,造价低。缺点:钢材用量大,耐久性不如方块结构,且需专门的预制下水设备;适用:当

31、地有沉箱预制场或工程量较大,工期短的大型码头。护壁码头:优点:结构简单,施工速度快,节省材料,造价低;缺点:整体性差,耐久性差;适用:有起重运输设备,有预制能力的情况或有干地施工条件。 大直径圆筒码头:特点1、钢材、砼用量少,每沿米材料用量与圆筒直径无关,只与码头高度荷圆筒壁厚有关。2、对地基条件的适应能力比其它重力式码头强3、构造简单,较受业主欢迎4、圆筒内填料可就地取材。适用条件:地质条件较好的深水码头,如广西防城港D=16m,或地基表面有不厚但又不薄的软土层的情况。 格形钢板桩码头,干地施工的现浇砼和浆砌石码头及混合式结构等。.按施工方法分类: 干地现浇或砌筑的结构;水下安装预制结构第三

32、章板桩码头1、板桩码头的组成部分、类型,各自的优缺点及适用条件板桩码头工作原理:由沉入地的基板桩墙和锚碇系统共同作用来维持其稳定性。板桩码头的组成部分及其作用:1)板桩墙,是板桩码头的最基本的组成部分,是下部打入或沉入地基中的板桩所构成的连续墙,其作用是挡土并形成码头直立岸壁。2 )拉杆,当码头较高时,墙后土压力较大,为了减小板桩的跨中弯矩(以减小板桩的厚度)和入土深度以及板桩墙顶端向水域方向的位移,应在适当位置设置拉杆,以传递水平荷载给锚碇结构。3)锚碇结构,承受拉杆拉力。4)导梁,连接板桩荷拉杆的构件,拉杆穿过板桩固定在导梁上,使每根板桩均受到拉杆作用。5)帽梁,作用相当于前面的胸墙,一般

33、现浇。当水位差不大时,可将帽梁和导梁合二为一,成为胸墙。6)码头设备,便于船舶系靠和装卸作业。 类型. 优缺点及适用条件:一、按板桩材料分木板桩码头:强度低,耐久性差,木材用量大,现在很少使用。钢筋砼板桩码头:耐久性好,用钢量少,造价低,但强度有限,一般用于中小型码头。钢板桩码头:强度高,重量轻,止水性好,施工方便,但易腐蚀,耐久性较差,适用于建造水深较大的海港码头,特别多用于要求不透水的船坞坞墙、施工围堰和防渗围幕等工程中。二、按锚碇系统分无锚板桩:结构简单,只有板桩墙和帽梁两部分。板桩呈悬臂工作状态,承载能力小,墙顶变形大,在码头中一般不用。有锚板桩:当墙高较大时,为了减小板桩的断面尺寸和

34、桩顶位移,而设置拉杆和斜拉桩锚碇。单锚板桩适用于墙高在610m以下的中小型码头。双锚板桩 多锚板桩。双锚或多锚:适用于墙高大于10m 的码头,但应用较少。原因:下拉杆高程较低,施工困难(一般要求水上穿拉杆);上下拉杆的位移很难协调,常会使某一拉杆严重超载。斜拉板桩不设水平拉杆,而增设斜拉桩来锚碇,使锚碇结构至板桩墙的距离大大缩短,减少了墙后开挖,特别适用于墙后不能开挖或开挖不经济的情况。但是斜拉桩承受水平力的能力有限,因此多用于中小型码头。三、按板桩墙结构分类普通板桩墙:由断面和长度均相同的板桩组成,其优点是板桩类型单一,施工方便。长短板桩结合:在普通板桩墙中,每隔一定距离,打入一根长板桩,这

35、样既保证了稳定,又降低了造价。适用于土质条件较差,在较深处才有硬土层的情况。主桩、板桩结合:将长桩的断面加大,成为主桩,以充分发挥长桩的作用,而将短桩的断面减小,成为辅桩,从而构成主桩板桩结合。适用同上。主桩挡板(套板)结合与3不同的是,它是在主桩后面放置挡板或在主桩之间插放套板来挡土。墙后土压力直接作用在挡板(套板)上,最后全部传给主桩,主桩受力很打,因此适用于水深不大的情况,且要求先开挖港池,以便挡板(套板)的安放。 四、 按施工方法分 预制沉入板桩地下墙 水下砼连续墙:用钻机在地下开沟槽,用水下浇注砼方法形成连续墙;预制板桩成槽沉放:将预制的钢筋砼板桩放在沟槽内,板桩前后用低标号的水泥土

36、浆填满2、钢筋砼矩形板桩的构造型式 矩形T形组合形 圆形(2)矩形,A特点:形状简单,制作方便,沉桩容易,接缝容易处理。但抗弯能力差,费材料。B、尺寸:其厚度应根据强度和抗裂要求由计算确定,一般为2050cm,宽度由打桩设备的龙口宽度决定,一般为5080cm。(3)板桩的立面和接缝:矩形板桩的特点:一侧阴榫拉通,另一侧从桩顶到设计水底以下1m以上做成阴榫(不得低于设计冲刷水位),1m以下做成阳榫;设计水底以上断面形成空腔,内填细石砼;顶面3050cm范围内,两侧各缩进24cm,以便桩设替打;底部一侧做成斜面,使得后一板桩打入时,紧贴前一板桩,接缝严密。 (4)板桩的配筋,钢筋砼板桩:普通钢筋砼

37、板桩25#,预应力钢筋砼板桩35#,设计中应尽可能采用预应力,以增加抗裂性和耐久性。 3、锚碇结构常用型式及受力特点?锚碇叉桩及斜拉桩宜布置在板桩主动破裂面以外的目的是什么?型式:、锚碇板(墙):依靠其前面回填料的土抗力来承受拉杆拉力,承载能力较小,水平位移较大。、锚碇桩(板桩):靠桩打入土中嵌固工作,其深度由“踢脚”稳定来确定,此结构属于无锚桩,承载能力较小,水平位移较大;、锚碇叉桩(斜拉桩):靠桩的轴向拉压和拉拔承载力来工作,其稳定性由桩的承载能力确定。4、拉杆的位置在高程上宜选在何处?减小拉杆挠曲及防锈措施?拉杆作用:减小板桩的跨中弯距,减小入土深度以及板桩墙顶端向水域方向的位移。拉杆的

38、位置在高程上的确定:从减小板桩墙的跨中弯矩来看,拉杆宜放在标高较低处,但为了保证水上穿拉杆和导梁胸墙的施工条件,一般在平均水位以下,设计低水位以上0.51.0m,且不得低于导梁或胸墙的施工水位。减小拉杆挠曲及防锈措施 夯实拉杆下的填土,或在拉杆下设置支撑,以减小沉陷,支撑形式有支撑桩、设砼垫块或垫墩、铺碎石或灰土垫层。在拉杆两端设置连接铰,以消除其附加应力。在拉杆上做个U形防护罩,使拉杆上面的土重及地面荷载不直接作用载拉杆上,而通过防护罩传到拉杆两侧的地基上。防锈处理,涂两层防锈漆,并用沥青麻袋包裹两层。回填料严禁带有腐蚀性。 5、板桩设置排水设施的目的及其构造:为了减小和消除作用在板桩墙上的

39、剩余水压力,板桩墙应在设计低水位以下设置排水孔,孔径58cm,孔距35m,孔后设置抛石棱体,以防止填土流失。6、板桩墙的主要设计荷载有那些?土压力的特征有哪些以及影响因素或原因是什么?剩余水压力的影响因素有那些?如何考虑此荷载?船舶荷载如何考虑?板桩墙的主要设计荷载、板桩码头上的作用力:永久作用:土体产生的主动土压力,剩余水压力;可变作用:地面可变荷载产生的土压力、船舶荷载、施工荷载、波浪力;偶然作用:地震荷载。板桩墙的稳定性、墙体的强度和拉杆力等值,主要由低水位情况控制。土压力:板桩墙在外力作用下,墙体将发生弯曲变形;因此,沿墙高各点的水平位移不同。板桩墙上各点的土压力不仅与该点以上的土重、

40、地面可变作用以及土的物理力学性质有关,而且与该点墙体的水平位移密切相关。主动土压力特点:呈R 形分布,原因:关键是沿墙高位移不同。因为板桩上部有拉杆拉住,下端嵌固于地基中,上下两端位移较小,跨中位移较大,墙后土体在板桩变形过程中呈现拱现象,使跨中一部分土压力通过滑动土条间的摩擦力传向上、下两端。从而是墙后主动土压力产生上下大,中间小的R 形状。 影响板桩墙上各点位移不同而造成墙后主动土压力呈R 形分布的主要因素有:板桩墙的刚度:刚度越小,R形越显著;锚碇点位移:越小,R形越显著;施工顺序:先打板桩,后开挖比反之更显著被动土压力的特点:墙下端扎入地基中,当墙体受侧向力作用后,墙前入土段将产生被动土压力。当入土深度不大时,入土段墙体只出现向前的位移,墙前被动土压力与刚性墙的相似。在板桩墙入土深度较大时,板桩嵌固于地基中,其下端还产生向后翘;因此。入土段的上部墙产生墙前被动土压力,其下部产生墙后的被动土压力。 特点:墙前被动土压力比理论计算值大1倍左右,而墙后(下端)被动土压力比计算值小一半左右。墙前被动土压力增大的原因:A、板桩在水底处发生向下转动变形,使墙前土体受到向下的挤压摩擦力。B、板桩向前变形,压挤墙前土体,使土的密实度增大,抗剪强度提高。C、入土段上部墙体对土体产生向下的摩擦力,使土体的稳定性增大。墙后被动土压力减小的原因A、板桩底部被地基嵌固,使

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服