资源描述
初二数学上册压轴题强化综合试题带答案
1.如图1,在平面直角坐标系中,点A(a,0)、点B(b,0)为x轴上两点,点C在y轴的正半轴上,且a,b满足等式.
(1)________;
(2)如图2,若M,N是OC上的点,且,延长BN交AC于P,判断△APN的形状并说明理由;
(3)如图3,若,点D为线段BC上的动点(不与B,C重合),过点D作于E,BG平分∠ABC交线段DE于点G,连AD,F为AD的中点,连接CG,CF,FG.试说明,CG与FG的数量关系.
2.操作发现:如图1,D是等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边△DCF,连接AF,易证AF=BD(不需要证明);
类比猜想:①如图2,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图1相同,猜想AF与BD在图1中的结论是否仍然成立。
深入探究:②如图3,当动点D在等边△ABC边BA上的一动点(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边△DCF和等边△DCF′,连接AF,BF′你能发现AF,BF′与AB有何数量关系,并证明你发现的结论。
③如图4,当动点D运动至等边△ABC边BA的延长线上时,其它作法与图3相同,猜想AF,BF′与AB在上题②中的结论是否仍然成立,若不成立,请给出你的结论并证明。
3.在平面直角坐标系中,直线 AB 分别交 x 轴、y 轴于点A(–a,0)、点 B(0, b),且 a、b 满足a2+b2–4a–8b+20=0,点 P 在直线 AB 的右侧,且∠APB=45°.
(1)a= ;b= .
(2)若点 P 在 x 轴上,请在图中画出图形(BP 为虚线),并写出点 P 的坐标;
(3)若点 P 不在 x 轴上,是否存在点P,使△ABP 为直角三角形?若存在,请求出此时P的坐标;若不存在,请说明理由.
4.请按照研究问题的步骤依次完成任务.
【问题背景】
(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D.
【简单应用】
(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)
【问题探究】
(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE, 若∠ABC=36°,∠ADC=16°,猜想∠P的度数为 ;
【拓展延伸】
(4)在图4中,若设∠C=x,∠B=y,∠CAP=∠CAB,∠CDP=∠CDB,试问∠P与∠C、∠B之间的数量关系为 (用x、y表示∠P) ;
(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论 .
5.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.
(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;
(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).
6.若整式A只含有字母x,且A的次数不超过3次,令,其中a,b,c,d为整数,在平面直角坐标系中,我们定义:M为整式A的关联点,我们规定次数超过3次的整式没有关联点.例如,若整式,则a=0,b=2,c=-5,d=4,故A的关联点为(-5,-11).
(1)若,试求出A的关联点坐标;
(2)若整式B是只含有字母x的整式,整式C是B与的乘积,若整式C的关联点为(6,15),求整式B的表达式.
(3)若整式D=x-2,整式E是只含有字母x的一次多项式,整式F是整式D与整式E的平方的乘积,若整式F的关联点为(-32,0),请直接写出整式E的表达式.
7.在△ABC中,∠ACB=90°,过点C作直线l∥AB,点B与点D关于直线l对称,连接BD交直线于点P,连接CD.点E是AC上一动点,点F是CD上一动点,点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.点F从D点出发,以每秒2cm的速度沿D→C→B→C→D路径运动,终点为D.点E、F同时开始运动,第一个点到达终点时第二个点也停止运动.
(1)当AC=BC时,试证明A、C、D三点共线;(温馨提示:证明∠ACD是平角)
(2)若AC=10cm,BC=7cm,设运动时间为t秒,当点F沿D→C方向时,求满足CE=2CF时t的值;
(3)若AC=10cm,BC=7cm,过点E、F分别作EM、FN垂直直线l于点M、N,求所有使△CEM≌△CFN成立的t的值.
8.在Rt△中,,∠,点是上一点.
(1)如图,平分∠,求证;
(2)如图,点在线段上,且∠,∠,求证;
(3)如图3,BM⊥AM,M是△ABC的中线AD延长线上一点,N在AD上,AN=BM,若DM=2,则MN= (直接写出结果).
【参考答案】
2.(1)0
(2)等腰三角形,见解析
(3)CG=2FG
【分析】(1)由可得,得出a、b的值即可求解;
(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;
解析:(1)0
(2)等腰三角形,见解析
(3)CG=2FG
【分析】(1)由可得,得出a、b的值即可求解;
(2)由OC垂直平分AB可得,再由外角可得 ,结合已知条件,等量代换即可得到结论;
(3)先延长GF至点M,使FM=FG,连接CG、CM、AM,可证,得到,再结合已知条件得到,可得是等腰三角形,利用等腰三角形的性质得出,最后证明 为等边三角形,即可得到结论.
(1)
解得
(2)
是等腰三角形,理由如下:
由点A(a,0)、点B(b,0)为x轴上两点,且
可得,OA=OB
OC垂直平分AB
,
是等腰三角形
(3)
,理由如下:
如图,延长GF至点M,使FM=FG,连接CG、CM、AM
F为AD的中点
在和中
垂直平分
,BG平分
为等边三角形,
在和中
即是等腰三角形
为等边三角形
在 中, .
【点睛】本题是三角形的综合题目,考查了非负性求和、线段垂直平分线的性质、外角的性质、全等三角形的判定和性质、等腰三角形的性质、等边三角形的判定和性质及直角三角形的性质,涉及知识点多,能够合理添加辅助线并综合运用知识点是解题的关键.
3.①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=
解析:①成立,证明见详解;②AF+BF′=AB,证明见详解;③不成立,AF=AB+BF′,证明见详解.
【分析】类比猜想:①通过证明△BCD≌△ACF,即可证明AF=BD;
深入探究:②AF+BF′=AB,利用全等三角形△BCD≌△ACF(SAS)的对应边BD=AF;同理△BCF′≌△ACD(SAS),则BF′=AD,所以AF+BF′=AB;
③结论不成立.新的结论是AF=AB+BF′;通过证明△BCF′≌△ACD(SAS),则BF′=AD(全等三角形的对应边相等);再结合(2)中的结论即可证得AF=AB+BF′.
【详解】解:类比猜想:①如图2中,
∵△ABC是等边三角形(已知),
∴BC=AC,∠BCA=60°(等边三角形的性质);
同理知,DC=CF,∠DCF=60°;
∴∠BCA+∠DCA=∠DCF+∠DCA,即∠BCD=∠ACF;
在△BCD和△ACF中,
∴△BCD≌△ACF(SAS),
∴BD=AF(全等三角形的对应边相等);
深入探究:②如图示
AF+BF′=AB;
证明如下:由①条件可知:∠BCA-∠DCA=∠DCF-∠DCA,即∠BCD=∠ACF,
∴同理可证△BCD≌△ACF(SAS),则BD=AF;
同理△BCF′≌△ACD(SAS),则BF′=AD,
∴AF+BF′=BD+AD=AB;
③结论不成立.新的结论是AF=AB+BF′;
如图示:
证明如下:
∵等边△DCF和等边△DCF′,由①同理可知:
在△BCF′和△ACD中,
∴△BCF′≌△ACD(SAS),
∴BF′=AD(全等三角形的对应边相等);
又由②知,AF=BD;
∴AF=BD=AB+AD=AB+BF′,即AF=AB+BF′.
【点睛】本题属于三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.
4.(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2).
【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;
(2)根据题意画出图形,由(1)得出OB的长,结合∠AP
解析:(1)2,4;(2)见解析,(4,0);(3)P(4,2)或(2,﹣2).
【分析】(1)将已知等式变形,利用乘方的非负性即可求出a值;
(2)根据题意画出图形,由(1)得出OB的长,结合∠APB=45°,得出OP=OB,可得点B的坐标;
(3)分当∠ABP=90°时和当∠BAP=90°时两种情况进行讨论,结合全等三角形的判定和性质即可求出点P坐标.
【详解】解:(1)∵a2+b2–4a–8b+20=0,
∴( a2–4a+4)+(b2–8b+16)=0,
∴( a–2)2+(b–4) 2=0
∴a=2,b=4,
故答案为:2,4;
(2)如图 1,由(1)知,b=4,
∴B(0,4),
∴OB=4,
点 P 在直线 AB 的右侧,且在 x 轴上,
∵∠APB=45°,
∴OP=OB=4,
∴P(4,0),
故答案为:(4,0);
(3)存在.理由如下:
由(1)知 a=﹣2,b=4,
∴A(﹣2,0),B(0,4),
∴OA=2,OB=4,
∵△ABP 是直角三角形,且∠APB=45°,
∴只有∠ABP=90°或∠BAP=90°,
Ⅰ、如图 2,当∠ABP=90°时,
∵∠APB=∠BAP=45°,
∴AB=PB ,
过点 P 作 PC⊥OB 于 C,
∴∠BPC+∠CBP=90°,
∵∠CBP+∠ABO=90 °,
∴∠ABO=∠BPC,
在△AOB 和△BCP 中,
,
∴△AOB≌△BCP(AAS),
∴PC=OB=4,BC=OA=2,
∴OC=OB﹣BC=2,
∴P(4,2),Ⅱ、如图3,当∠BAP=90°时,
过点 P'作 P'D⊥OA 于 D,
同Ⅰ的方法得,△ADP'≌△BOA,
∴DP'=OA=2,AD=OB=4,
∴OD=AD﹣OA=2,
∴P'(2,﹣2);
即:满足条件的点 P(4,2)或(2,﹣2);
【点睛】本题考查了非负数的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,难度不大,解题的关键是要根据直角三角形的性质进行分类讨论.
5.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.
【分析】(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方
解析:(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=;(5)∠P=.
【分析】(1)根据三角形内角和定理即可证明;
(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;
(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;
(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=∠CAB,∠CDP=∠CDB,得到y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),从而可得∠P=y+∠CAB-∠CAB-∠CDB+∠CDB=;
(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,所以∠P=90°+∠BCD-∠BAD +∠D=.
【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,
在△COD中,∠C+∠D+∠COD=180°,
∵∠AOB=∠COD,
∴∠A+∠B=∠C+∠D;
(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,
∴∠1=∠2,∠3=∠4,
由(1)的结论得:,
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,
∴∠P=(∠B+∠D)=23°;
(3)解:如图3,
∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,
∴∠1=∠2,∠3=∠4,
∴∠PAD=180°-∠2,∠PCD=180°-∠3,
∵∠P+(180°-∠1)=∠D+(180°-∠3),
∠P+∠1=∠B+∠4,
∴2∠P=∠B+∠D,
∴∠P=(∠B+∠D)=×(36°+16°)=26°;
故答案为:26°;
(4)由题意可得:∠B+∠CAB=∠C+∠BDC,
即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,
∠B+∠BAP=∠P+∠PDB,
即y+∠BAP=∠P+∠PDB,
即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),
即y+(∠CAB-∠CAB)=∠P+(∠BDC-∠CDB),
∴∠P=y+∠CAB-∠CAB-∠CDB+∠CDB
= y+(∠CAB-∠CDB)
=y+(x-y)
=
故答案为:∠P=;
(5)由题意可得:∠B+∠BAD=∠D+∠BCD,
∠DAP+∠P=∠PCD+∠D,
∴∠B-∠D=∠BCD-∠BAD,
∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,
∴∠BAP=∠DAP,∠PCE=∠PCB,
∴∠BAD+∠P=(∠BCD+∠BCE)+∠D,
∴∠BAD+∠P=[∠BCD+(180°-∠BCD)]+∠D,
∴∠P=90°+∠BCD-∠BAD +∠D
=90°+(∠BCD-∠BAD)+∠D
=90°+(∠B-∠D)+∠D
=,
故答案为:∠P=.
【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.
6.(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠B
解析:(1)过程见解析;(2)MN= NC﹣BM.
【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN =60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.
(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.
【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.
∵△BDC为等腰三角形,△ABC为等边三角形,
∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,
又BD=DC,且∠BDC=120°,
∴∠DBC=∠DCB=30°
∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,
∴∠MBD=∠ECD=90°,
在△MBD与△ECD中,
∵ ,
∴△MBD≌△ECD(SAS),
∴MD=DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△DMN与△DEN中,
∵ ,
∴△DMN≌△DEN(SAS),
∴MN=NE=CE+NC=BM+NC.
(2)如图②中,结论:MN=NC﹣BM.
理由:在CA上截取CE=BM.
∵△ABC是正三角形,
∴∠ACB=∠ABC=60°,
又∵BD=CD,∠BDC=120°,
∴∠BCD=∠CBD=30°,
∴∠MBD=∠DCE=90°,
在△BMD和△CED中
∵ ,
∴△BMD≌△CED(SAS),
∴DM= DE,∠BDM=∠CDE
∵∠MDN =60°,∠BDC=120°,
∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,
即:∠MDN =∠NDE=60°,
在△MDN和△EDN中
∵ ,
∴△MDN≌△EDN(SAS),
∴MN =NE=NC﹣CE=NC﹣BM.
【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
7.(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关
解析:(1)
(2)
(3)或
【分析】(1)根据整式得出,,,,根据关联点的定义得出,,即可得出的关联点坐标;
(2)根据题意得出中的次数为次,设 ,计算出,进而表达出,,,的值,再根据的关联点为,列出关于 , 的等式,解出、的值即可;
(3)设,根据题意求出,进而表达出,,,的值,再根据的关联点为,列出关于,的等式,解出、的值即可.
(1)
解:(1),
,,,,
,,
的关联点坐标为:,
故笞案为:;
(2)
整式是只含有字母的整式,整式是与的乘积,
是二次多项式,且的次数不能超过次,
中的次数为次,
设 ,
,
,,,,
整式的关联点为,
,,
解得:,,
;
(3)
根据题意:设,
,
,,,,
整式 的关联点为,
,,
,,
,
把代入得: ,
解得: ,
或,
或.
【点睛】本题主要考查整式的乘法,掌握整式的乘法是解决问题的关键.
8.(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=18
解析:(1)见解析
(2)
(3)
【分析】(1)先由AC=BC、∠ACB=90°得到∠ABC=45°,进而得到∠CBD=∠CDB=45°,然后得到∠BCD=90°,最后得到∠ACB+∠BCD=180°,即A、C、D三点共线;
(2)先用含有t的式子表示CE和CF的长,然后根据CE=2CF列出方程求得t的值;
(3)先由∠BCP=∠FCN、∠BCP+∠ECM=90°,∠ECM+∠MEC=90°得到∠MEC=∠FCN,然后结合全等三角形的性质列出方程求得t的值.
(1)
证明:∵AC=BC,∠ACB=90°,
∴∠ABC=45°,
∵点B与点D关于直线l对称,
∴BD⊥直线l,BC=CD,
∵直线l∥AB,
∴BD⊥AB,
∴∠ABD=90°,
∴∠CBD=∠CDB=45°,
∴∠BCD=90°,
∴∠ACB+∠BCD=180°,
∴A、C、D三点共线;
(2)
解:∵AC=10cm,BC=7cm,
∴当点F沿D→C方向时,0≤t≤3.5,
∴CE=10-t,CF=7-2t,
∵CE=2CF,
∴10-t=2(7-2t),
解得:t=.
(3)
解:∵∠BCP=∠FCN,∠BCP+∠ECM=90°,∠ECM+∠MEC=90°,
∴∠MEC=∠FCN,
∵△CEM≌△CFN,
当CE=CF时,△CEM≌△CFN,
当点F沿D→C路径运动时,
10-t=7-2t,
解得,t=-3,不合题意,
当点F沿C→B路径运动时,
10-t=2t-7,
解得,t=,
当点F沿B→C路径运动时,
10-t=7-(2t-7×2),
解得,t=11,
∵第一个点到达终点时第二个点也停止运动.点E从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C.AC=10,
∴0≤t≤10,
∴t=11时,已停止运动.
综上所述,当t=秒时,△CEM≌△CFN.
【点睛】本题是三角形综合题目,考查的是全等三角形的判定和性质、等腰三角形的性质、等腰直角三角形的性质等知识,掌握全等三角形的判定定理和性质定理,灵活运用分类讨论思想是解题的关键.
9.(1)见解析
(2)见解析
(3)8
【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题.
(2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△A
解析:(1)见解析
(2)见解析
(3)8
【分析】(1)如图1中,作DH⊥AB于H.证明△ADC≌△ADH即可解决问题.
(2)如图2中,过点C作CM⊥CE交AD的延长线于M,连接BM.证明△ACE≌△BCM(SAS),推出AE=BM,再利用直角三角形30度角的性质即可解决问题.
(3)如图3中,作CH⊥MN于H.证明得到,进一步证明即可解决问题.
(1)
证明:如图1中,作DH⊥AB于H.
∵∠ACD=∠AHD=90°,AD=AD,∠DAC=∠DAH,
∴△ADC≌△ADH(ASA),
∴AC=AH,DC=DH,
∵CA=CB,∠C=90°,
∴∠B=45°,
∵∠DHB=90°,
∴∠HDB=∠B=45°,
∴HD=HB,
∴BH=CD,
∴AB=AH+BH=AC+CD.
(2)
如图2中,作CM⊥CE交AD的延长线于M,连接BM.
,
,
,
,
,
∵∠ACB=∠ECM=90°,
,
,
∵CA=CB,CE=CM,
∴△ACE≌△BCM(SAS),
∴AE=BM,
∵在Rt△EMB中,∠MEB=30°,
∴BE=2BM=2AE.
(3)
解:如图3中,作CH⊥MN于H.
,
,
,
,
,
,
,
,,
,
,
,
,
是的中线,
,
,,
,
,
,
.
【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
展开阅读全文