资源描述
2022年人教版中学七7年级下册数学期末解答题复习
一、解答题
1.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.
2.教材中的探究:如图,把两个边长为1的小正方形沿对角线剪开,用所得到的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法(数轴的单位长度为1).
(1)阅读理解:图1中大正方形的边长为________,图2中点A表示的数为________;
(2)迁移应用:
请你参照上面的方法,把5个小正方形按图3位置摆放,并将其进行裁剪,拼成一个大正方形.
①请在图3中画出裁剪线,并在图3中画出所拼得的大正方形的示意图.
②利用①中的成果,在图4的数轴上分别标出表示数-0.5以及 的点,并比较它们的大小.
3.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等.
(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)
(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?(参考数据:,)
4.学校要建一个面积是81平方米的草坪,草坪周围用铁栅栏围绕,现有两种方案:有人建议建成正方形,也有人建议建成圆形,如果从节省铁栅栏费用的角度考虑(栅栏周长越小,费用越少),你选择哪种方案?请说明理由.(π取3)
5.如图,阴影部分(正方形)的四个顶点在5×5的网格格点上.
(1)请求出图中阴影部分(正方形)的面积和边长
(2)若边长的整数部分为,小数部分为,求的值.
二、解答题
6.已知:ABCD.点E在CD上,点F,H在AB上,点G在AB,CD之间,连接FG,EH,GE,∠GFB=∠CEH.
(1)如图1,求证:GFEH;
(2)如图2,若∠GEH=α,FM平分∠AFG,EM平分∠GEC,试问∠M与α之间有怎样的数量关系(用含α的式子表示∠M)?请写出你的猜想,并加以证明.
7.如图1,//,点、分别在、上,点在直线、之间,且.
(1)求的值;
(2)如图2,直线分别交、的角平分线于点、,直接写出的值;
(3)如图3,在内,;在内,,直线分别交、分别于点、,且,直接写出的值.
8.如图,已知//,点是射线上一动点(与点不重合),分别平分和,分别交射线于点.
(1)当时,的度数是_______;
(2)当,求的度数(用的代数式表示);
(3)当点运动时,与的度数之比是否随点的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.
(4)当点运动到使时,请直接写出的度数.
9.如图,已知直线射线CD,.P是射线EB上一动点,过点P作PQEC交射线CD于点Q,连接CP.作,交直线AB于点F,CG平分.
(1)若点P,F,G都在点E的右侧,求的度数;
(2)若点P,F,G都在点E的右侧,,求的度数;
(3)在点P的运动过程中,是否存在这样的情形,使?若存在,求出的度数;若不存在,请说明理由.
10.已知,.点在上,点在 上.
(1)如图1中,、、的数量关系为: ;(不需要证明);如图2中,、、的数量关系为: ;(不需要证明)
(2)如图 3中,平分,平分,且,求的度数;
(3)如图4中,,平分,平分,且,则的大小是否发生变化,若变化,请说明理由,若不变化,求出么的度数.
三、解答题
11.如图1,点O在上,,射线交于点C,已知m,n满足:.
(1)试说明//的理由;
(2)如图2,平分,平分,直线、交于点E,则______;
(3)若将绕点O逆时针旋转,其余条件都不变,在旋转过程中,的度数是否发生变化?请说明你的结论.
12.如图1,为直线上一点,过点作射线,将一直角三角板()的直角顶点放在点处,一边在射线上,另一边与都在直线的上方,将图1中的三角板绕点以每秒3°的速度沿顺时针方向旋转一周.
(1)几秒后与重合?
(2)如图2,经过秒后,,求此时的值.
(3)若三角板在转动的同时,射线也绕点以每秒6°的速度沿顺时针方向旋转一周,那么经过多长时间与重合?请画图并说明理由.
(4)在(3)的条件下,求经过多长时间平分?请画图并说明理由.
13.如图,,平分,设为,点E是射线上的一个动点.
(1)若时,且,求的度数;
(2)若点E运动到上方,且满足,,求的值;
(3)若,求的度数(用含n和的代数式表示).
14.问题情境
(1)如图1,已知,,,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得________.
问题迁移
(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,,,与相交于点,有一动点在边上运动,连接,,记,.
①如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;
②如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸
(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系.
15.如图1,D是△ABC延长线上的一点,CEAB.
(1)求证:∠ACD=∠A+∠B;
(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD=70°,求∠F的度数.
(3)如图3,AHBD,G为CD上一点,Q为AC上一点,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN与∠ACB的关系,说明理由.
四、解答题
16.在△ABC中,射线AG平分∠BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DE∥AC交AB于点E.
(1)如图1,点D在线段CG上运动时,DF平分∠EDB
①若∠BAC=100°,∠C=30°,则∠AFD= ;若∠B=40°,则∠AFD= ;
②试探究∠AFD与∠B之间的数量关系?请说明理由;
(2)点D在线段BG上运动时,∠BDE的角平分线所在直线与射线AG交于点F试探究∠AFD与∠B之间的数量关系,并说明理由
17.在△ABC中,∠BAC=90°,点D是BC上一点,将△ABD沿AD翻折后得到△AED,边AE交BC于点F.
(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角: ;所有与∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度数;
②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.
18.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
19.互动学习课堂上某小组同学对一个课题展开了探究.
小亮:已知,如图三角形,点是三角形内一点,连接,,试探究与,,之间的关系.
小明:可以用三角形内角和定理去解决.
小丽:用外角的相关结论也能解决.
(1)请你在横线上补全小明的探究过程:
∵,(______)
∴,(等式性质)
∵,
∴,
∴.(______)
(2)请你按照小丽的思路完成探究过程;
(3)利用探究的结果,解决下列问题:
①如图①,在凹四边形中,,,求______;
②如图②,在凹四边形中,与的角平分线交于点,,,则______;
③如图③,,的十等分线相交于点、、、…、,若,,则的度数为______;
④如图④,,的角平分线交于点,则,与之间的数量关系是______;
⑤如图⑤,,的角平分线交于点,,,求的度数.
20.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.
(1)l2与l3的位置关系是 ;
(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED= °,∠ADC= °;
(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;
(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.
【参考答案】
一、解答题
1.正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
解析:正方形纸板的边长是18厘米
【分析】
根据正方形的面积公式进行解答.
【详解】
解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:
,
∴,
取正值,可得,
∴答:正方形纸板的边长是18厘米.
【点评】
本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.
2.(1);(2)①见解析;②见解析,
【分析】
(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;
(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;
②
解析:(1);(2)①见解析;②见解析,
【分析】
(1)设正方形边长为a,根据正方形面积公式,结合平方根的运算求出a值,则知结果;
(2) ① 根据面积相等,利用割补法裁剪后拼得如图所示的正方形;
②由题(1)的原理得出大正方形的边长为,然后在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,再把N点表示出来,即可比较它们的大小.
【详解】
解:设正方形边长为a,
∵a2=2,
∴a=,
故答案为:,;
(2)解:①裁剪后拼得的大正方形如图所示:
②设拼成的大正方形的边长为b,
∴b2=5,
∴b=±,
在数轴上以-3为圆心,以大正方形的边长为半径画弧交数轴的右方与一点M,则M表示的数为-3+,看图可知,表示-0.5的N点在M点的右方,
∴比较大小:.
【点睛】
本题主要考查平方根与算术平方根的应用及实数的大小比较,熟练掌握平方根与算术平方根的意义及实数的大小比较是解题的关键.
3.(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个
解析:(1);(2)不同意,理由见解析
【分析】
(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;
(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.
【详解】
解:(1)设正方形边长为,则,由算术平方根的意义可知,
所以正方形的边长是.
(2)不同意.
因为:两个小正方形的面积分别为和,则它们的边长分别为和.,即两个正方形边长的和约为,
所以,即两个正方形边长的和大于长方形的长,
所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片.
【点睛】
本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念.
4.选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答
解析:选择建成圆形草坪的方案,理由详见解析
【分析】
根据正方形的面积公式、算术平方根的概念求出正方形的边长,求出正方形的周长,根据圆的面积公式、算术平方根的概念求出圆的半径,求出圆的周长,比较大小得到答案.
【详解】
解:选择建成圆形草坪的方案,理由如下:
设建成正方形时的边长为x米,
由题意得:x2=81,
解得:x=±9,
∵x>0,
∴x=9,
∴正方形的周长为4×9=36,
设建成圆形时圆的半径为r米,
由题意得:πr2=81.
解得:,
∵r>0.
∴,
∴圆的周长=,
∵,
∴,
∴建成圆形草坪时所花的费用较少,
故选择建成圆形草坪的方案.
【点睛】
本题考查的是算术平方根的应用,掌握算术平方根概念是解题的关键.
5.(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
解析:(1)S=13,边长为 ;(2)6
【详解】
分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案.
详解:解:(1)S=25-12=13, 边长为 ,
(2)a=3,b= -3 原式=9+-3-=6.
点睛:本题主要考查的就是无理数的估算,属于中等难度的题型.解决这个问题的关键就是根据正方形的面积得出边长.
二、解答题
6.(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详
解析:(1)见解析;(2),证明见解析.
【分析】
(1)由平行线的性质得到,等量代换得出,即可根据“同位角相等,两直线平行”得解;
(2)过点作,过点作,根据平行线的性质及角平分线的定义求解即可.
【详解】
(1)证明:,
,
,
,
;
(2)解:,理由如下:
如图2,过点作,过点作,
,
,
,,
,
同理,,
平分,平分,
,,
,
由(1)知,,
,
,
,
,
.
【点睛】
此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键.
7.(1) ;(2)的值为40°;(3).
【分析】
(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;
(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM
解析:(1) ;(2)的值为40°;(3).
【分析】
(1)过点O作OG∥AB,可得AB∥OG∥CD,利用平行线的性质可求解;
(2)过点M作MK∥AB,过点N作NH∥CD,由角平分线的定义可设∠BEM=∠OEM=x,∠CFN=∠OFN=y,由∠BEO+∠DFO=260°可求x-y=40°,进而求解;
(3)设直线FK与EG交于点H,FK与AB交于点K,根据平行线的性质即三角形外角的性质及,可得,结合,可得
即可得关于n的方程,计算可求解n值.
【详解】
证明:过点O作OG∥AB,
∵AB∥CD,
∴AB∥OG∥CD,
∴
∴
即
∵∠EOF=100°,
∴∠;
(2)解:过点M作MK∥AB,过点N作NH∥CD,
∵EM平分∠BEO,FN平分∠CFO,
设
∵
∴
∴x-y=40°,
∵MK∥AB,NH∥CD,AB∥CD,
∴AB∥MK∥NH∥CD,
∴
∴
=x-y
=40°,
故的值为40°;
(3)如图,设直线FK与EG交于点H,FK与AB交于点K,
∵AB∥CD,
∴
∵
∴
∵
∴
即
∵FK在∠DFO内,
∴ ,
∵
∴
∴
即
∴
解得 .
经检验,符合题意,
故答案为:.
【点睛】
本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.
8.(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠
解析:(1)120°;(2)90°-x°;(3)不变,;(4)45°
【分析】
(1)由平行线的性质:两直线平行同旁内角互补可得;
(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-x°;
(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;
(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=∠ABN=2∠DBN,由平行线的性质可得∠A+∠ABN=90°,即可得出答案.
【详解】
解:(1)∵AM∥BN,∠A=60°,
∴∠A+∠ABN=180°,
∴∠ABN=120°;
(2)∵AM∥BN,
∴∠ABN+∠A=180°,
∴∠ABN=180°-x°,
∴∠ABP+∠PBN=180°-x°,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠CBP,∠PBN=2∠DBP,
∴2∠CBP+2∠DBP=180°-x°,
∴∠CBD=∠CBP+∠DBP=(180°-x°)=90°-x°;
(3)不变,∠ADB:∠APB=.
∵AM∥BN,
∴∠APB=∠PBN,∠ADB=∠DBN,
∵BD平分∠PBN,
∴∠PBN=2∠DBN,
∴∠APB:∠ADB=2:1,
∴∠ADB:∠APB=;
(4)∵AM∥BN,
∴∠ACB=∠CBN,
当∠ACB=∠ABD时,则有∠CBN=∠ABD,
∴∠ABC+∠CBD=∠CBD+∠DBN,
∴∠ABC=∠DBN,
∵BC平分∠ABP,BD平分∠PBN,
∴∠ABP=2∠ABC,∠PBN=2∠DBN,
∴∠ABP=∠PBN=2∠DBN=∠ABN,
∵AM∥BN,
∴∠A+∠ABN=180°,
∴∠A+∠ABN=90°,
∴∠A+2∠DBN=90°,
∴∠A+∠DBN=(∠A+2∠DBN)=45°.
【点睛】
本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.
9.(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G
解析:(1)40°;(2)65°;(3)存在,56°或20°
【分析】
(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG的度数;
(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠GCF=25°,再根据PQ∥CE,即可得出∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=4x-3x=x,分两种情况讨论:①当点G、F在点E的右侧时,②当点G、F在点E的左侧时,依据等量关系列方程求解即可.
【详解】
解:(1)∵∠CEB=100°,AB∥CD,
∴∠ECQ=80°,
∵∠PCF=∠PCQ,CG平分∠ECF,
∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;
(2)∵AB∥CD
∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,
∴∠EGC+∠ECG=80°,
又∵∠EGC-∠ECG=30°,
∴∠EGC=55°,∠ECG=25°,
∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,
∵PQ∥CE,
∴∠CPQ=∠ECP=65°;
(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,
①当点G、F在点E的右侧时,
则∠ECG=x,∠PCF=∠PCD=x,
∵∠ECD=80°,
∴x+x+x+x=80°,
解得x=16°,
∴∠CPQ=∠ECP=x+x+x=56°;
②当点G、F在点E的左侧时,
则∠ECG=∠GCF=x,
∵∠CGF=180°-4x,∠GCQ=80°+x,
∴180°-4x=80°+x,
解得x=20°,
∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,
∴∠PCQ=∠FCQ=60°,
∴∠CPQ=∠ECP=80°-60°=20°.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.
10.(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EHAB,易得EHABCD,根据平行线的性质
解析:(1)∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.(2)120°(3)∠FEQ的大小没发生变化,∠FEQ=30°.
【分析】
(1)过E作EHAB,易得EHABCD,根据平行线的性质可求解;过F作FHAB,易得FHABCD,根据平行线的性质可求解;
(2)根据(1)的结论及角平分线的定义可得2(∠BME+∠END)+∠BMF−∠FND=180°,可求解∠BMF=60°,进而可求解;
(3)根据平行线的性质及角平分线的定义可推知∠FEQ=∠BME,进而可求解.
【详解】
解:(1)过E作EHAB,如图1,
∴∠BME=∠MEH,
∵ABCD,
∴HECD,
∴∠END=∠HEN,
∴∠MEN=∠MEH+∠HEN=∠BME+∠END,
即∠BME=∠MEN−∠END.
如图2,过F作FHAB,
∴∠BMF=∠MFK,
∵ABCD,
∴FHCD,
∴∠FND=∠KFN,
∴∠MFN=∠MFK−∠KFN=∠BMF−∠FND,
即:∠BMF=∠MFN+∠FND.
故答案为∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
(2)由(1)得∠BME=∠MEN−∠END;∠BMF=∠MFN+∠FND.
∵NE平分∠FND,MB平分∠FME,
∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,
∵2∠MEN+∠MFN=180°,
∴2(∠BME+∠END)+∠BMF−∠FND=180°,
∴2∠BME+2∠END+∠BMF−∠FND=180°,
即2∠BMF+∠FND+∠BMF−∠FND=180°,
解得∠BMF=60°,
∴∠FME=2∠BMF=120°;
(3)∠FEQ的大小没发生变化,∠FEQ=30°.
由(1)知:∠MEN=∠BME+∠END,
∵EF平分∠MEN,NP平分∠END,
∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,
∵EQNP,
∴∠NEQ=∠ENP,
∴∠FEQ=∠FEN−∠NEQ=(∠BME+∠END)−∠END=∠BME,
∵∠BME=60°,
∴∠FEQ=×60°=30°.
【点睛】
本题主要考查平行线的性质及角平分线的定义,作辅助线是解题的关键.
三、解答题
11.(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也
解析:(1)见解析;(2)45;(3)不变,见解析;
【分析】
(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;
(2)易得∠AON的度数,由两条角平分线,可得∠DON,∠OCF的度数,也易得∠COE的度数,由三角形外角的性质即可求得∠OEF的度数;
(3)不变,分三种情况讨论即可.
【详解】
(1)∵,,且
∴,
∴m=20,n=70
∴∠MOC=90゜-∠AOM=70゜
∴∠MOC=∠OCQ=70゜
∴MN∥PQ
(2)∵∠AON=180゜-∠AOM=160゜
又∵平分,平分
∴,
∵
∴
∴∠OEF=∠OCF+∠COE=35゜+10゜=45゜
故答案为:45.
(3)不变,理由如下:
如图,当0゜<α<20゜时,
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠MOC=∠OCQ=2x
∵∠AON=360゜-90゜—(180゜-2x)=90゜+2x,OD平分∠AON
∴∠DON=45゜+x
∵∠MOE=∠DON=45゜+x
∴∠COE=∠MOE-∠MOC=45゜+x-2x=45゜-x
∴∠OEF=∠COE+∠OCF=45゜-x+x=45゜
当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜
当20゜<α<90゜时,如图
∵CF平分∠OCQ
∴∠OCF=∠QCF
设∠OCF=∠QCF=x
则∠OCQ=2x
∵MN∥PQ
∴∠NOC=180゜-∠OCQ=180゜-2x
∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON
∴∠AOE=135゜-x
∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜
∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜
综上所述,∠EOF的度数不变.
【点睛】
本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.
12.(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3
解析:(1)10秒;(2)20秒;(3)20秒,画图见解析;(4)秒,画图见解析
【分析】
(1)用角的度数除以转动速度即可得;
(2)求出∠AON=60°,结合旋转速度可得时间t;
(3)设∠AON=3t,则∠AOC=30°+6t,由题意列出方程,解方程即可;
(4)根据转动速度关系和OC平分∠MOB,由题意列出方程,解方程即可.
【详解】
解:(1)∵30÷3=10,
∴10秒后ON与OC重合;
(2)∵MN∥AB
∴∠BOM=∠M=30°,
∵∠AON+∠BOM=90°,
∴∠AON=60°,
∴t=60÷3=20
∴经过t秒后,MN∥AB,t=20秒.
(3)如图3所示:
∵∠AON+∠BOM=90°,∠BOC=∠BOM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,则∠AOC=30°+6t,
∵OC与OM重合,
∵∠AOC+∠BOC=180°,
可得:(30°+6t)+(90°-3t)=180°,
解得:t=20秒;
即经过20秒时间OC与OM重合;
(4)如图4所示:
∵∠AON+∠BOM=90°,∠BOC=∠COM,
∵三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,
设∠AON=3t,∠AOC=30°+6t,∵∠BOM+∠AON=90°,
∴∠BOC=∠COM=∠BOM=(90°-3t),
由题意得:180°-(30°+6t)=( 90°-3t),
解得:t=秒,
即经过秒OC平分∠MOB.
【点睛】
此题考查了平行线的判定与性质,角的计算以及方程的应用,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.
13.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;
(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.
【详解】
解:(1),,
,
平分,
,
,
又,
;
(2)根据题意画图,如图1所示,
,,
,
,
,
,
又平分,
,
;
(3)①如图2所示,
,
,
平分,
,
,
又,
,
,
解得;
②如图3所示,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.
14.(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即
解析:(1);(2)①,②,理由见解析;(3)
【分析】
(1)过点作,则,由平行线的性质可得的度数;
(2)①过点作的平行线,依据平行线的性质可得与,之间的数量关系;
②过作,依据平行线的性质可得,,即可得到;
(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为.
【详解】
解:(1)如图1,过点作,则,
由平行线的性质可得,,
又∵,,
∴,
故答案为:;
(2)①如图2,与,之间的数量关系为;
过点P作PM∥FD,则PM∥FD∥CG,
∵PM∥FD,
∴∠1=∠α,
∵PM∥CG,
∴∠2=∠β,
∴∠1+∠2=∠α+∠β,
即:,
②如图,与,之间的数量关系为;理由:
过作,
∵,
∴,
∴,,
∴;
(3)如图,
由①可知,∠N=∠3+∠4,
∵EN平分∠DEP,AN平分∠PAC,
∴∠3=∠α,∠4=∠β,
∴,
∴与,之间的数量关系为.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.
15.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.
【分析】
(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;
(2)首先根据角
解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.
【分析】
(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;
(2)首先根据角平分线的定义得出∠FCD=∠ECD,∠HAF=∠HAD,进而得出∠F=(∠HAD+∠ECD),然后根据平行线的性质得出∠HAD+∠ECD的度数,进而可得出答案;
(3)根据平行线的性质及角平分线的定义得出,, ,再通过等量代换即可得出∠MQN=∠ACB.
【详解】
解:(1)∵CEAB,
∴∠ACE=∠A,∠ECD=∠B,
∵∠ACD=∠ACE+∠ECD,
∴∠ACD=∠A+∠B;
(2)∵CF平分∠ECD,FA平分∠HAD,
∴∠FCD=∠ECD,∠HAF=∠HAD,
∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),
∵CHAB,
∴∠ECD=∠B,
∵AHBC,
∴∠B+∠HAB=180°,
∵∠BAD=70°,
,
∴∠F=(∠B+∠HAD)=55°;
(3)∠MQN=∠ACB,理由如下:
平分,
.
平分,
.
,
.
∴∠MQN=∠MQG﹣∠NQG
=180°﹣∠QGR﹣∠NQG
=180°﹣(∠AQG+∠QGD)
=180°﹣(180°﹣∠CQG+180°﹣∠QGC)
=(∠CQG+∠QGC)
=∠ACB.
【点睛】
本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.
四、解答题
16.(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由
解析:(1)①115°;110°;②;理由见解析;(2);理由见解析
【分析】
(1)①若∠BAC=100°,∠C=30°,由三角形内角和定理求出∠B=50°,由平行线的性质得出∠EDB=∠C=30°,由角平分线定义得出,,由三角形的外角性质得出∠DGF=100°,再由三角形的外角性质即可得出结果;若∠B=40°,则∠BAC+∠C=180°-40°=140°,由角平分线定义得出,,由三角形的外角性质即可得出结果;
②由①得:∠EDB=∠C,,,由三角形的外角性质得出∠DGF=∠B+∠BAG,再由三角形的外角性质即可得出结论;
(2)由(1)得:∠EDB=∠C,,,由三角形的外角性质和三角形内角和定理即可得出结论.
【详解】
(1)①若∠BAC=100°,∠C=30°,
则∠B=180°-100°-30°=50°,
∵DE∥AC,
∴∠EDB=∠C=30°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∴∠DGF=∠B+∠BAG=50°+50°=100°,
∴∠AFD=∠DGF+∠FDG=100°+15°=115°;
若∠B=40°,则∠BAC+∠C=180°-40°=140°,
∵AG平分∠BAC,DF平分∠EDB,
∴,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG
=
故答案为:115°;110°;
②;
理由如下:由①得:∠EDB=∠C,,,
∵∠DGF=∠B+∠BAG,
∴∠AFD=∠DGF+∠FDG
=∠B+∠BAG+∠FDG
=
;
(2)如图2所示:;
理由如下:
由(1)得:∠EDB=∠C,,,
∵∠AHF=∠B+∠BDH,
∴∠AFD=180°-∠BAG-∠AHF
.
【点睛】
本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键
展开阅读全文