收藏 分销(赏)

人教版中学七年级数学下册期末质量检测题及解析.doc

上传人:精**** 文档编号:1749871 上传时间:2024-05-08 格式:DOC 页数:25 大小:708.54KB 下载积分:10 金币
下载 相关 举报
人教版中学七年级数学下册期末质量检测题及解析.doc_第1页
第1页 / 共25页
人教版中学七年级数学下册期末质量检测题及解析.doc_第2页
第2页 / 共25页


点击查看更多>>
资源描述
人教版中学七年级数学下册期末质量检测题及解析 一、选择题 1.如图,属于同位角的是( ) A.与 B.与 C.与 D.与 2.下列哪些图形是通过平移可以得到的(  ) A. B. C. D. 3.若点在第四象限内,则点的坐标可能是( ) A. B. C. D. 4.有下列命题,①的算术平方根是2;②一个角的邻补角一定大于这个角;③在同一平面内,垂直于同一条直线的两直线平行;④平行于同一条直线的两条直线互相平行.其中假命题有( ) A.①② B.①③ C.②④ D.③④ 5.如图,一副直角三角板图示放置,点在的延长线上,点在边上,,,则( ) A. B. C. D. 6.下列等式正确的是(  ) A. B. C. D. 7.如图,直线,三角板的直角顶点在直线上,,则( ) A.26° B.54° C.64° D.66° 8.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是(  ) A.(﹣1,0) B.(0,2) C.(﹣1,﹣2) D.(0,1) 九、填空题 9.如果和互为相反数,那么________. 十、填空题 10.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则(m+n)2020的值是_____. 十一、填空题 11.如图,已知OB、OC为△ABC的角平分线,DE∥BC交AB、AC于D、E,△ADE的周长为12,BC长为5,则△ABC的周长__. 十二、填空题 12.如图,已知AB//EF,∠B=40°,∠E=30°,则∠C-∠D的度数为________________. 十三、填空题 13.如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA'恰好落在折痕EF上,点B的对应点B'落在长方形外,B'F与CD交于点H,已知∠B'HC=134°,则∠AGE=_____°. 十四、填空题 14.a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,……,以此类推,则a2020=______ 十五、填空题 15.在平面直角坐标系中,点P的坐标为,则点P在第________象限. 十六、填空题 16.育红中学八五班的数学社团在做如下的探究活动:在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动1个单位长度,其移动路线如图所示,第1次移动到点A1,第2次移动到点A2…第n次移动到点An,则△OA2A2021的面积是 __________________. 十七、解答题 17.计算: (1) (2) 十八、解答题 18.求下列各式中的: (1); (2); (3). 十九、解答题 19.完成下面的说理过程:如图,在四边形中,E、F分别是,延长线上的点,连接,分别交,于点G、H.已知,,对和说明理由. 理由:∵(已知), ( ), ∴(等量代换). ∴( ). ∵( ). ∵(已知), ∴.( ). ∴( ). 二十、解答题 20.如图,在平面直角坐标系中,已知P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2). (1)请画出上述平移后的△A1B1C1,并写出点A1,C1的坐标; (2)写出平移的过程; (3)求出以A,C,A1,C1为顶点的四边形的面积. 二十一、解答题 21.已知a是的整数部分,b是的小数部分. (1)求a,b的值; (2)求的平方根. 二十二、解答题 22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形. (1)基础巩固:拼成的大正方形的面积为______,边长为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______; (3)变式拓展: ①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图; ②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数. 二十三、解答题 23.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°. (1)如图1,若∠BCG=40°,求∠ABC的度数; (2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小; (3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由. 二十四、解答题 24.问题情境 (1)如图1,已知,求的度数.佩佩同学的思路:过点作,进而,由平行线的性质来求,求得 ; 问题迁移 (2)图2,图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合与相交于点,有一动点在边上运动,连接,记. ①如图2,当点在两点之间运动时,请直接写出与之间的数量关系; ②如图3,当点在两点之间运动时,与之间有何数量关系?请判断并说明理由. 二十五、解答题 25.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方. (1)l2与l3的位置关系是   ; (2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=   °,∠ADC=   °; (3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG; (4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值. 【参考答案】 一、选择题 1.A 解析:A 【分析】 根据同位角、内错角、同旁内角的意义进行判断即可. 【详解】 解:∠2与∠3是两条直线被第三条直线所截形成的同位角,因此选项A符合题意. ∠1与∠4是对顶角,因此选项B不符合题意. ∠1与∠3是内错角,因此选项C不符合题意. ∠2与∠4同旁内角,因此选项D不符合题意. 故选:A. 【点睛】 本题考查同位角、内错角、同旁内角,理解和掌握同位角、内错角、同旁内角的意义是正确判断的前提. 2.B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 解析:B 【分析】 根据平移、旋转、轴对称的定义逐项判断即可. 【详解】 A、通过旋转得到,故本选项错误 B、通过平移得到,故本选项正确 C、通过轴对称得到,故本选项错误 D、通过旋转得到,故本选项错误 故选:B. 【点睛】 本题考查了平移、旋转、轴对称的定义,熟记定义是解题关键. 3.B 【分析】 根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案. 【详解】 根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求, 故选:B. 【点睛】 本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键. 4.A 【分析】 根据算术平方根的定义,邻补角的定义,平行线的判定逐一分析判断即可. 【详解】 ①,的算术平方根是,①是假命题; ②大于的角的的邻补角小于这个角,②是假命题; ③在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题; ④平行于同一条直线的两条直线互相平行,正确,是真命题. 所以假命题有①②. 故选A. 【点睛】 本题考查了算术平方根的定义,邻补角的定义,平行线的判定等知识,掌握以上知识是解题的关键. 5.B 【分析】 根据平行线的性质可知, ,由 即可得出答案。 【详解】 解:∵ ∴, ∵ ∴ ∴ 故答案是B 【点睛】 本题主要考查了平行线的性质:(1)两直线平行,同位角相等(2)两直线平行,内错角相等(3)两直线平行,同旁内角互补. 6.C 【分析】 根据算术平方根、立方根的定义计算即可 【详解】 A、负数没有平方根,故错误 B、表示计算算术平方根,所以,故错误 C、,故正确 D、,故错误 故选:C 【点睛】 本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键 7.C 【分析】 根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2. 【详解】 解:如图, ∵∠1=26°,∠ACB=90°, ∴∠3=90°-∠1=64°, ∵直线a∥b, ∴∠2=∠3=64°, 故选:C. 【点睛】 本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键. 8.D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解 解析:D 【分析】 根据题意可得,从A→B→C→D→A一圈的长度为2(AB+BC)=10,据此分析即可得细线另一端在绕四边形第202圈的第1个单位长度的位置,从而求得细线另一端所在位置的点的坐标. 【详解】 解:∵A点坐标为(1,1),B点坐标为(﹣1,1),C点坐标为(﹣1,﹣2), ∴AB=1﹣(﹣1)=2,BC=2﹣(﹣1)=3, ∴从A→B→C→D→A一圈的长度为2(AB+BC)=10. 2021÷10=202…1, ∴细线另一端在绕四边形第202圈的第1个单位长度的位置, 即细线另一端所在位置的点的坐标是(0,1). 故选:D. 【点睛】 本题考查了坐标规律探索,找到规律是解题的关键. 九、填空题 9.-2 【分析】 利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案. 【详解】 解:∵和|y-2|互为相反数, ∴, ∴x+1=0,y-2=0, 解得:x=-1,y=2, ∴xy 解析:-2 【分析】 利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案. 【详解】 解:∵和|y-2|互为相反数, ∴, ∴x+1=0,y-2=0, 解得:x=-1,y=2, ∴xy=-1×2=-2 故答案为:-2. 【点睛】 本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0. 十、填空题 10.1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m= 解析:1 【分析】 直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案. 【详解】 解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称, ∴1+m=3,1-n=2, ∴m=2,n=-1, ∴(m+n)2020=(2-1)2020=1; 故答案为:1. 【点睛】 此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键. 十一、填空题 11.17 【详解】 ∵0B、OC为△ABC的角平分线, ∴∠ABO=∠OBC,∠ACO=∠BCO, ∵DE∥BC, ∴∠DOB=∠OBC,∠EOC=∠OCB, ∴∠ABO=∠DOB,∠ACO=∠EOC, 解析:17 【详解】 ∵0B、OC为△ABC的角平分线, ∴∠ABO=∠OBC,∠ACO=∠BCO, ∵DE∥BC, ∴∠DOB=∠OBC,∠EOC=∠OCB, ∴∠ABO=∠DOB,∠ACO=∠EOC, ∴BD=OD,EC=OE, ∴DE=OD+OE=BD+EC; ∵△ADE的周长为12, ∴AD+DE+AE=AD+OD+OE+AE=AD+BD+CE+AE=AB+AC=12, ∵BC=7, ∴△ABC的周长为:AB+AC+BC=12+5=17. 故答案为17. 十二、填空题 12.10° 【分析】 过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解. 【详解】 解析:10° 【分析】 过点C作CG∥AB,过点D作DH∥EF,根据平行线的性质可得AB∥CG∥DH∥EF,从而可得∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH,即可求解. 【详解】 解:如图,过点C作CG∥AB,过点D作DH∥EF, ∵AB//EF, ∴AB∥CG∥DH∥EF, ∵∠B=40°,∠E=30°, ∴∠BCG=∠B=40°,∠EDH=∠E=30°,∠DCG=∠CDH, ∴∠BCD-∠CDE=∠BCG-∠EDH=40°-30°=10°. 故答案为:10°. 【点睛】 本题主要考查了平行线的性质,准确作出辅助线是解题的关键. 十三、填空题 13.11 【分析】 由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数. 【详解】 解:如图, , , , , 折叠, , , , , 故答案为:11. 解析:11 【分析】 由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数. 【详解】 解:如图, , , , , 折叠, , , , , 故答案为:11. 【点睛】 本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解. 十四、填空题 14.. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索, 解析:. 【分析】 先根据题意求得、、、,发现规律即可求解. 【详解】 解:∵a1=3 ∴,,,, ∴该数列为每4个数为一周期循环, ∵ ∴a2020=. 故答案为:. 【点睛】 此题主要考查规律的探索,解题的关键是根据题意发现规律. 十五、填空题 15.三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案 解析:三 【分析】 先判断出点P的纵坐标的符号,再根据各象限内点的符号特征判断点P所在象限即可. 【详解】 解:∵a2为非负数, ∴-a2-1为负数, ∴点P的符号为(-,-) ∴点P在第三象限. 故答案为:三. 【点睛】 本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 十六、填空题 16.【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环 解析: 【分析】 由题意知OA4n=2n,图形运动4次一个循环,横坐标对应一个循环增加2,计算出A2A2021,由此即可解决问题. 【详解】 解:由题意知OA4n=2n(n为正整数),图形运动4次一个循环,横坐标对应一个循环增加2 ∵2021÷4=505…1, ∴A2021与A1是对应点,A2020与A0是对应点 ∴OA2020=505×2=1010,A1A2021=1010 ∴A2A2021=1010-1=1009 则△OA2A2019的面积是×1×1009=, 故答案为:. 【点睛】 本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得. 十七、解答题 17.(1)-3;(2)-11. 【分析】 (1)分别计算乘方,立方根,绝对值,再合并即可得到答案; (2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案. 【详解】 (1)解:原式= (2)解 解析:(1)-3;(2)-11. 【分析】 (1)分别计算乘方,立方根,绝对值,再合并即可得到答案; (2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案. 【详解】 (1)解:原式= (2)解:原式 = =. 【点睛】 本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键. 十八、解答题 18.(1)0.3;(2);(3)或 【分析】 (1)先移项,再求立方根即可; (2)先两边同时除以49,再求平方根即可; (3)先开平方,可得两个一元一次方程,再解一元一次方程即可. 【详解】 解:(1 解析:(1)0.3;(2);(3)或 【分析】 (1)先移项,再求立方根即可; (2)先两边同时除以49,再求平方根即可; (3)先开平方,可得两个一元一次方程,再解一元一次方程即可. 【详解】 解:(1)∵, ∴, ∴; (2)∵, ∴, ∴; (3)∵, ∴或, 解得:或. 【点睛】 本题主要考查学生对平方根、立方根概念的运用,熟练掌握平方根与立方根的定义是解决本题的关键. 十九、解答题 19.对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直 解析:对顶角相等;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行. 【分析】 先根据同位角相等,两直线平行,判定AD∥BC,进而得到∠ADE=∠C,再根据内错角相等,两直线平行,即可得到AB∥CD. 【详解】 证明:∵∠1=∠2(已知) ∠1=∠AGH(对顶角相等) ∴∠2=∠AGH(等量代换) ∴AD∥BC(同位角相等,两直线平行) ∴∠ADE=∠C(两直线平行,同位角相等) ∵∠A=∠C(已知) ∴∠ADE=∠A ∴AB∥CD(内错角相等,两直线平行). 【点睛】 本题考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系. 二十、解答题 20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14. 【分析】 (1)根据点P的对应点P1(a+6,b+2)可分别 解析:(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14. 【分析】 (1)根据点P的对应点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象; (2)由(1)可直接进行求解; (3)由(1)的图象可直接利用割补法进行求解面积. 【详解】 解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象: ∴由图象可得; (2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接,如图所示: ∵点, ∴点在同一条直线上,且与x轴平行, ∴. 【点睛】 本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键. 二十一、解答题 21.(1)a=2,b=;(2)±3 【分析】 (1)首先估算出的范围,从而得到和的范围,可得a,b值; (2)将a,b的值代入计算,再求平方根即可. 【详解】 解:(1)∵, ∴, ∴,, ∴a=2,b 解析:(1)a=2,b=;(2)±3 【分析】 (1)首先估算出的范围,从而得到和的范围,可得a,b值; (2)将a,b的值代入计算,再求平方根即可. 【详解】 解:(1)∵, ∴, ∴,, ∴a=2,b=; (2) = = ∴的平方根为±3. 【点睛】 此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键. 二十二、解答题 22.(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实 解析:(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实数与数轴的关系可得结果; (3)以2×3的长方形的对角线为边长即可画出图形; (4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形. 【详解】 解:(1)∵图1中有10个小正方形, ∴面积为10,边长AD为; (2)∵BC=,点B表示的数为-1, ∴BE=, ∴点E表示的数为; (3)①如图所示: ②∵正方形面积为13, ∴边长为, 如图,点E表示面积为13的正方形边长. 【点睛】 本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键. 二十三、解答题 23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后 解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析. 【分析】 (1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果; (2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果; (3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果. 【详解】 解:(1)过点B作BMHD,则HDGEBM,如图1, ∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG, ∵∠DAB=120°,∠BCG=40°, ∴∠ABM=60°,∠CBM=40°, ∴∠ABC=∠ABM+∠CBM=100°; (2)过B作BPHDGE,过F作FQHDGE,如图2, ∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG, ∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG, ∵∠DAB=120°, ∴∠HAB=180°﹣∠DAB=60°, ∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°, ∴∠HAF=30°,∠FCG=40°, ∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°, ∴∠ABC>∠AFC; (3)过P作PKHDGE,如图3, ∴∠APK=∠HAP,∠CPK=∠PCG, ∴∠APC=∠HAP+∠PCG, ∵PN平分∠APC, ∴∠NPC=∠HAP+∠PCG, ∵∠PCE=180°﹣∠PCG,CN平分∠PCE, ∴∠PCN=90°﹣∠PCG, ∵∠N+∠NPC+∠PCN=180°, ∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP, 即:∠N=90°﹣∠HAP. 【点睛】 本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点. 二十四、解答题 24.(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; 解析:(1)80;(2)①;② 【分析】 (1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数; (2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系; ②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ-∠EPQ=∠β-∠α. 【详解】 解:(1)过点P作PG∥AB,则PG∥CD, 由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°, 又∵∠PBA=125°,∠PCD=155°, ∴∠BPC=360°-125°-155°=80°, 故答案为:80; (2)①如图2, 过点P作FD的平行线PQ, 则DF∥PQ∥AC, ∴∠α=∠EPQ,∠β=∠APQ, ∴∠APE=∠EPQ+∠APQ=∠α+∠β, ∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β; ②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β-∠α;理由: 过P作PQ∥DF, ∵DF∥CG, ∴PQ∥CG, ∴∠β=∠QPA,∠α=∠QPE, ∴∠APE=∠APQ-∠EPQ=∠β-∠α. 【点睛】 本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论. 二十五、解答题 25.(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行 解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变, 【分析】 (1)根据平行线的判定定理即可得到结论; (2)根据角平分线的定义和平行线的性质即可得到结论; (3)根据角平分线的定义和平行线的性质即可得到结论; (4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论. 【详解】 解:(1)直线l2⊥l1,l3⊥l1, ∴l2∥l3, 即l2与l3的位置关系是互相平行, 故答案为:互相平行; (2)∵CE平分∠BCD, ∴∠BCE=∠DCE=BCD, ∵∠BCD=70°, ∴∠DCE=35°, ∵l2∥l3, ∴∠CED=∠DCE=35°, ∵l2⊥l1, ∴∠CAD=90°, ∴∠ADC=90°﹣70°=20°; 故答案为:35,20; (3)∵CF平分∠BCD, ∴∠BCF=∠DCF, ∵l2⊥l1, ∴∠CAD=90°, ∴∠BCF+∠AGC=90°, ∵CD⊥BD, ∴∠DCF+∠CFD=90°, ∴∠AGC=∠CFD, ∵∠AGC=∠DGF, ∴∠DGF=∠DFG; (4)∠N:∠BCD的值不会变化,等于;理由如下: ∵l2∥l3, ∴∠BED=∠EBH, ∵∠DBE=∠DEB, ∴∠DBE=∠EBH, ∴∠DBH=2∠DBE, ∵∠BCD+∠BDC=∠DBH, ∴∠BCD+∠BDC=2∠DBE, ∵∠N+∠BDN=∠DBE, ∴∠BCD+∠BDC=2∠N+2∠BDN, ∵DN平分∠BDC, ∴∠BDC=2∠BDN, ∴∠BCD=2∠N, ∴∠N:∠BCD=. 【点睛】 本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服