资源描述
人教版中学七年级下册数学期末复习试卷(附答案)
一、选择题
1.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )
A.∠2 和∠4 B.∠6和∠4 C.∠2 和∠6 D.∠6和∠3
2.下列各组图形可以通过平移互相得到的是( )
A. B.
C. D.
3.在平面直角坐标系中,下列各点位于第三象限的是( )
A. B. C. D.
4.下列命题是假命题的是( )
A.两个角的和等于平角时,这两个角互为补角 B.内错角相等
C.两条平行线被第三条直线所截,内错角相等 D.对顶角相等
5.如图,直线,被直线,所截,若,,则的度数是( )
A. B. C. D.
6.如图,下列各数中,数轴上点A表示的可能是( )
A.4的算术平方根 B.4的立方根 C.8的算术平方根 D.8的立方根
7.如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35°,则∠1的度数为( )
A.45° B.125°
C.55° D.35°
8.如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为……第2021次碰到长方形边上的坐标为( )
A. B.
C. D.
九、填空题
9.如果和互为相反数,那么________.
十、填空题
10.点关于y轴对称的点的坐标是______.
十一、填空题
11.如图,BE是△ABC的角平分线,AD是△ABC的高,∠ABC=60°,则
∠AOE=_____.
十二、填空题
12.如图,,直角三角板直角顶点在直线上.已知,则的度数为______°.
十三、填空题
13.如图所示,一个四边形纸片ABCD,,把纸片按如图所示折叠,使点B落在AD边上的点,AE是折痕,,则=________度.
十四、填空题
14.任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,对144只需进行_____次操作后变为1;那么只需进行3次操作后变为1的所有正整数中,最大的是_________.
十五、填空题
15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________.
十六、填空题
16.在平面直角坐标系中,一个智能机器人接到的指令是:从原点出发,按“向上→向右→向下→向右→向下→向右→向上→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点,第二次移动到点,……,第次移动到点,则点的坐标是______.
十七、解答题
17.计算:(1)
(2)
十八、解答题
18.求下列各式中的值:
(1);
(2);
(3).
十九、解答题
19.如图,∠1=∠2,∠3=∠C,∠4=∠5.请说明BF//DE的理由.(请在括号中填上推理依据)
解:∵∠1=∠2(已知)
∴CF//BD( )
∴∠3+∠CAB=180°( )
∵∠3=∠C(已知)
∴∠C+∠CAB=180°(等式的性质)
∴AB//CD( )
∴∠4=∠EGA(两直线平行,同位角相等)
∵∠4=∠5(已知)
∴∠5=∠EGA(等量代换)
∴ED//FB( )
二十、解答题
20.在平面直角坐标系中,为坐标原点,点的坐标为,点坐标为,且满足.
(1)若没有平方根,且点到轴的距离是点到轴距离的倍,求点的坐标;
(2)点的坐标为,的面积是的倍,求点的坐标.
二十一、解答题
21.已知:是的整数部分,是的小数部分.
求:
(1),值
(2)的平方根.
二十二、解答题
22.(1)小丽计划在母亲节那天送份礼物妈妈,特设计一个表面积为12dm2的正方体纸盒,则这个正方体的棱长是 .
(2)为了增加小区的绿化面积,幸福公园准备修建一个面积121πm2的草坪,草坪周围用篱笆围绕.现从对称美的角度考虑有甲,乙两种方案,甲方案:建成正方形;乙方案:建成圆形的.如果从节省篱笆费用的角度考虑,你会选择哪种方案?请说明理由;
(3)在(2)的方案中,审批时发现修如此大的草坪,目的是亲近自然,若按上方案就没达到目的,因此建议用如图的设计方案:正方形里修三条小路,三条小路的宽度是一样,这样草坪的实际面积就减少了21πm2,请你根据此方案求出各小路的宽度(π取整数).
二十三、解答题
23.已知,AB∥DE,点C在AB上方,连接BC、CD.
(1)如图1,求证:∠BCD+∠CDE=∠ABC;
(2)如图2,过点C作CF⊥BC交ED的延长线于点F,探究∠ABC和∠F之间的数量关系;
(3)如图3,在(2)的条件下,∠CFD的平分线交CD于点G,连接GB并延长至点H,若BH平分∠ABC,求∠BGD﹣∠CGF的值.
二十四、解答题
24.阅读下面材料:
小颖遇到这样一个问题:已知:如图甲,为之间一点,连接,求的度数.
她是这样做的:
过点作
则有
因为
所以①
所以
所以
即_ ;
1.小颖求得的度数为__ ;
2.上述思路中的①的理由是__ ;
3.请你参考她的思考问题的方法,解决问题:
已知:直线点在直线上,点在直线上,连接平分平分且所在的直线交于点.
(1)如图1,当点在点的左侧时,若,则的度数为 ;(用含有的式子表示).
(2)如图2,当点在点的右侧时,设,直接写出的度数(用含有的式子表示).
二十五、解答题
25.解读基础:
(1)图1形似燕尾,我们称之为“燕尾形”,请写出、、、之间的关系,并说明理由;
(2)图2形似8字,我们称之为“八字形”,请写出、、、之间的关系,并说明理由:
应用乐园:直接运用上述两个结论解答下列各题
(3)①如图3,在中,、分别平分和,请直接写出和的关系 ;
②如图4, .
(4)如图5,与的角平分线相交于点,与的角平分线相交于点,已知,,求和的度数.
【参考答案】
一、选择题
1.A
解析:A
【分析】
同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案.
【详解】
解:∵直线AD,BE被直线BF和AC所截,
∴∠1与∠2是同位角,∠5与∠4是内错角,
故选A.
【点睛】
本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义.
2.B
【分析】
根据平移的定义逐项分析判断即可.
【详解】
解:A、不能通过平移得到,故本选项错误;
B、能通过平移得到,故本选项正确;
C、不能通过平移得到,故本选项错误;
D、不能通过平移得到,故
解析:B
【分析】
根据平移的定义逐项分析判断即可.
【详解】
解:A、不能通过平移得到,故本选项错误;
B、能通过平移得到,故本选项正确;
C、不能通过平移得到,故本选项错误;
D、不能通过平移得到,故本选项错误.
故选:B.
【点睛】
本题考查了图形的平移,正确掌握平移的定义和性质是解题关键.
3.D
【分析】
根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.
【详解】
解:A、(0,3)在y轴上,故本选项不符合题意;
B、(−2,1)在第二象限,故本选项不符合题意;
C、(1,−2)在第四象限,故本选项不符合题意;
D、(-1,-1)在第三象限,故本选项符合题意.
故选:D.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.B
【分析】
根据内错角、对顶角、补角的定义一一判断即可.
【详解】
解:A、两个角的和等于平角时,这两个角互为补角,为真命题;
B、两直线平行,内错角相等,故错误,为假命题;
C、两条平行线被第三条直线所截,内错角相等,为真命题;
D、对顶角相等,为真命题;
故选:B.
【点睛】
本题考查命题与定理、内错角、对顶角、补角的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.
5.C
【分析】
首先证明a∥b,推出∠4=∠5,求出∠5即可.
【详解】
解:∵∠1=∠2,
∴a∥b,
∴∠4=∠5,
∵∠5=180°﹣∠3=55°,
∴∠4=55°,
故选:C.
【点睛】
本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
6.C
【详解】
解:由题意可知4的算术平方根是2,4的立方根是 <2, 8的算术平方根是, 2<<3,8的立方根是2,
故根据数轴可知,
故选C
7.C
【分析】
根据∠ACB=90°,∠2=35°求出∠3的度数,根据平行线的性质得出∠1=∠3,代入即可得出答案.
【详解】
解:∵∠ACB=90°,∠2=35°,
∴∠3=180°-90°-35°=55°,
∵a∥b,
∴∠1=∠3=55°.
故选:C.
【点睛】
本题考查了平行线的性质和邻补角的定义,解此题的关键是求出∠3的度数和得出∠1=∠3,题目比较典型,难度适中.
8.A
【分析】
该题属于找规律题型,只要把运动周期找出来即可解决.
【详解】
由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3
解析:A
【分析】
该题属于找规律题型,只要把运动周期找出来即可解决.
【详解】
由反弹线前后对称规律,得出第1-6次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环,
2021÷6=366……5,
第2021次碰到长方形的边的点的坐标为(7,4),
故选:A.
【点睛】
本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答.
九、填空题
9.-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy
解析:-2
【分析】
利用相反数的性质列出方程,求出方程的解即可得到x与y的值,进而得出答案.
【详解】
解:∵和|y-2|互为相反数,
∴,
∴x+1=0,y-2=0,
解得:x=-1,y=2,
∴xy=-1×2=-2
故答案为:-2.
【点睛】
本题考查了绝对值和平方数的非负性.互为相反数的两个数相加等于0,和|y-2|都是非负数,所以这个数都是0.
十、填空题
10.【分析】
根据点坐标关于y轴对称的变换规律即可得.
【详解】
点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,
则点关于y轴对称的点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标
解析:
【分析】
根据点坐标关于y轴对称的变换规律即可得.
【详解】
点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,
则点关于y轴对称的点的坐标是,
故答案为:.
【点睛】
本题考查了点坐标规律探索,熟练掌握点坐标关于y轴对称的变换规律是解题关键.
十一、填空题
11.60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠A
解析:60°
【分析】
先根据角平分线的定义求出∠DOB的度数,再由三角形外角的性质求出∠BOD的度数,由对顶角相等即可得出结论.
【详解】
∵BE是△ABC的角平分线,∠ABC=60°,∴∠DOB=∠ABC=×60°=30°,∵AD是△ABC的高,∴∠ADC=90°,∵∠ADC是△OBD的外角,∴∠BOD=∠ADC-∠OBD=90°-30°=60°,∴∠AOE=∠BOD=60°,故答案为60°.
【点睛】
本题考查的是三角形外角的性质,即三角形的一个外角等于和它不相邻的两个内角的和.
十二、填空题
12.40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠D
解析:40
【分析】
根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.
【详解】
解:如图所示
∵a∥b
∴∠1=∠DAE,∠2=∠CAB
∵∠DAC=90°
∴∠DAE+∠CAB=180°-∠DAC=90°
∴∠1+∠2=90°
∴∠2=90°-∠1=40°
故答案为:40.
【点睛】
本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.
十三、填空题
13.【分析】
根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解.
【详解】
解:,,
,
由翻折的性质得,,
,
,
.
故答案为:.
【点睛】
解析:【分析】
根据四边形的内角和等于求出,根据翻折的性质可得,然后求出 ,再根据直角三角形两锐角互余列式计算即可得解.
【详解】
解:,,
,
由翻折的性质得,,
,
,
.
故答案为:.
【点睛】
本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质.
十四、填空题
14.255
【分析】
根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.
【详解】
解:∵,,,
∴对144只需进行3次操作
解析:255
【分析】
根据运算过程得出,,,可得144只需进行3次操作变为1,再根据操作过程分别求出255和256进行几次操作,即可得出答案.
【详解】
解:∵,,,
∴对144只需进行3次操作后变为1,
∵,,,
∴对255只需进行3次操作后变为1,
从后向前推,找到需要4次操作得到1的最小整数,
∵,, , ,
∴对256只需进行4次操作后变为1,
∴只需进行3次操作后变为1的所有正整数中,最大的是255,
故答案为:3,255.
【点睛】
本题考查了估算无理数的大小的应用,主要考查学生的理解能力和计算能力.
十五、填空题
15.或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3
解析:或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,
当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去),
综上,x的值为2或,
故答案为2或.
【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.
十六、填空题
16.(1010,-1)
【分析】
根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-
解析:(1010,-1)
【分析】
根据图象可得移动8次图象完成一个循环,从而可得出点的坐标.
【详解】
解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,-1),A6(3,-1),A7(3,0),A8(4,0),A9(4,1),…,
可以的到,图像时经过8次移动经历一个循环,其中纵坐标每个循环对应点不发生变化, 横坐标每一次循环增加4
∵2021÷8=252…5,
∴的坐标为(252×4+2,-1),
∴点的坐标是是(1010,-1).
故答案为:(1010,-1).
【点睛】
本题考查了点的坐标的变化变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.
十七、解答题
17.(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
解析:(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
=4.
故答案为(1)0;(2)4.
【点睛】
本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.
十八、解答题
18.(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出
解析:(1)0.2;(2);(3)5
【分析】
(1)直接利用立方根的性质计算得出答案;
(2)直接将-3移项,合并再利用立方根的性质计算得出答案;
(3)直接利用立方根的性质计算得出x-1的值,进而得出x的值.
【详解】
解:(1)x3=0.008,
则x=0.2;
(2)x3-3=
则x3=3+
故x3=
解得:x=;
(3)(x-1)3=64
则x-1=4,
解得:x=5.
【点睛】
此题主要考查了立方根,正确把握立方根的定义是解题关键.
十九、解答题
19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平
解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行
【分析】
运用平行线的性质定理和判定定理可得结论.
【详解】
解:(已知)
(内错角相等,两直线平行),
(两直线平行,同旁内角互补),
(已知),
(等式的性质),
(同旁内角互补,两直线平行),
(两直线平行,同位角相等),
(已知),
(等量代换),
(同位角相等,两直线平行).
故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键.
二十、解答题
20.(1)(-2,6);(2)(,)或(8,-4)
【分析】
(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;
(2)利用A(a,-
解析:(1)(-2,6);(2)(,)或(8,-4)
【分析】
(1)根据平方根的意义得到a<0,再利用点B到x轴的距离是点A到x轴距离的3倍得到方程,解之得到a值,可写出B点坐标;
(2)利用A(a,-a)和B(a,4-a)得到AB=4,AB与y轴平行,由于点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,则判断点A、点B在y轴的右侧,即a>0,根据三角形面积公式得到,解方程得到a值,然后写出B点坐标.
【详解】
解:(1)∵a没有平方根,
∴a<0,
∴-a>0,
∵点B到x轴的距离是点A到x轴距离的3倍,
∴,
∵a+b=4,
∴,
解得:a=-2或a=1(舍),
∴b=6,此时点B的坐标为(-2,6);
(2)∵点A的坐标为(a,-a),点B坐标为(a,4-a),
∴AB=4,AB与y轴平行,
∵点D的坐标为(4,-2),△OAB的面积是△DAB面积的2倍,
∴点A、点B在y轴的右侧,即a>0,
∴,
解得:a=或a=8,
∴B点坐标为(,)或(8,-4).
【点睛】
本题考查了坐标与图形性质:利用点的坐标计算线段的长和判断线段与坐标轴的位置关系.也考查了三角形的面积公式和平方根的性质.
二十一、解答题
21.(1),.
(2).
【分析】
(1)首先得出接近的整数,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
,
∴整数部分,小数部分.
(2)
原式
,
则的平方根为.
【点睛】
此题
解析:(1),.
(2).
【分析】
(1)首先得出接近的整数,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
,
∴整数部分,小数部分.
(2)
原式
,
则的平方根为.
【点睛】
此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.
二十二、解答题
22.(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为
【分析】
(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;
(2)根据正方形的周
解析:(1)dm;(2)从节省篱笆费用的角度考虑,选择乙方案建成圆形;(3)根据此方案求出小路的宽度为
【分析】
(1)先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可;
(2)根据正方形的周长公式以及圆形的周长公式即可求出答案;
(3)根据图形的平移求解.
【详解】
解:(1)∵正方体有6个面且每个面都相等,
∴正方体的一个面的面积=2 dm2.
∴正方形的棱长=dm;
故答案为: dm ;
(2)甲方案:设正方形的边长为xm,则x2 =121
∴x =11
∴正方形的周长为:4x=44m
乙方案: 设圆的半径rm为,则r2==121
∴r =11
∴圆的周长为:2= 22m
∴ 442222(2-
∵ 4>
∴ 2
∴
∴正方形的周长比圆的周长大
故从节省篱笆费用的角度考虑,选择乙方案建成圆形;
(3)依题意可进行如图所示的平移,设小路的宽度为ym ,则
(11 –y)2=12121
∴11 –y =10
∴ y=
∵ 取整数
∴ y =
答:根据此方案求出小路的宽度为;
【点睛】
本题主要考查的是算术平方根的定义,熟练掌握正方形的性质以及平移的性质是解题的关键;
二十三、解答题
23.(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质
解析:(1)证明见解析;(2);(3).
【分析】
(1)过点作,先根据平行线的性质可得,再根据平行公理推论可得,然后根据平行线的性质可得,由此即可得证;
(2)过点作,同(1)的方法,先根据平行线的性质得出,,从而可得,再根据垂直的定义可得,由此即可得出结论;
(3)过点作,延长至点,先根据平行线的性质可得,,从而可得,再根据角平分线的定义、结合(2)的结论可得,然后根据角的和差、对顶角相等可得,由此即可得出答案.
【详解】
证明:(1)如图,过点作,
,
,
,
,即,
,
;
(2)如图,过点作,
,
,
,
,即,
,
,
,
,
;
(3)如图,过点作,延长至点,
,
,
,
,
平分,平分,
,
由(2)可知,,
,
又,
.
【点睛】
本题考查了平行线的性质、对顶角相等、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.
二十四、解答题
24.;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据B
解析:;2.平行于同一条直线的两条直线平行;3.(1);(2).
【分析】
1、根据角度和计算得到答案;
2、根据平行线的推论解答;
3、(1)根据角平分线的性质及1的结论证明即可得到答案;
(2)根据BE平分平分求出,过点E作EF∥AB,根据平行线的性质求出∠BEF=,,再利用周角求出答案.
【详解】
1、过点作
则有
因为
所以①
所以
所以
即;
故答案为:;
2、过点作
则有
因为
所以EF∥CD(平行于同一条直线的两条直线平行),
故答案为:平行于同一条直线的两条直线平行;
3、(1)∵BE平分平分
∴,
过点E作EF∥AB,由1可得∠BED=,
∴∠BED=,
故答案为:;
(2)∵BE平分平分
∴,
过点E作EF∥AB,则∠ABE=∠BEF=,
∵
∴EF∥CD,
∴,
∴,
∴.
【点睛】
此题考查平行线的性质:两直线平行内错角相等,两直线平行同旁内角互补,平行线的推论,正确引出辅助线是解题的关键.
二十五、解答题
25.(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结
解析:(1),理由详见解析;(2),理由详见解析:(3)①;②360°;(4); .
【分析】
(1)根据三角形外角等于不相邻的两个内角之和即可得出结论;
(2)根据三角形内角和定理及对顶角相等即可得出结论;
(3)①根据角平分线的定义及三角形内角和定理即可得出结论;
②连结BE,由(2)的结论及四边形内角和为360°即可得出结论;
(4)根据(1)的结论、角平分线的性质以及三角形内角和定理即可得出结论.
【详解】
(1).理由如下:
如图1,,,,;
(2).理由如下:
在中,,在中,,,;
(3)①,,、分别平分和,,.
故答案为:.
②连结.
∵,.
故答案为:;
(4)由(1)知,,,,,,,,,,,;
.
【点睛】
本题考查了角平分线的性质,三角形内角和;熟练掌握角平分线的性质,进行合理的等量代换是解题的关键.
展开阅读全文