资源描述
人教版六年级上册数学应用题附答案
1.六年级三个班学生共同植树,一班植树160棵,二班植树的棵树是一班的,三班植树的棵树是二班的,三班植树多少棵?
2.超音速飞机的飞行速度可达到1500千米/时,磁悬浮列车的运行速度比它慢。磁悬浮列车的速度是多少?
3.李红爸爸每月工资约4500元,妈妈每月工资约3500元,每月家庭支出大约是他俩工资总数的。李红家每月大约能结余多少元?
4.六年级共有学生240人,其中六(1)班人数占,六(2)班人数占,这两个班哪个班的人数多?多多少人?
5.一堆煤60千克,第一天烧了它的千克,这堆煤比原来少了多少千克?
6.一本故事书有360页,已经看了全书的。
7.河口县某小学六年级原有学生238人,后来六年级转来2人,现在六年级人数的正好是五年级现在的人数,现在五年级比六年级少多少人?
8.学校组织同学们参加兴趣小组活动,参加绘画组的共90人,参加文艺组的同学是绘画组的,参加书法组的同学是绘画组的,参加书法组的有多少人?
9.李阿姨自己现榨果汁升来招待客人,每个玻璃杯的容量是200毫升,可以倒满几杯?
10.一本200页的书,慧慧第一天看了,第二天看了,慧慧这两天一共看了多少页?
11.王乐家果园里枇杷树是桃树的,桃树是李树的,李树有120棵,王乐家一共有枇杷树多少棵?
12.某工程队修一条长600米长的公路,第一阶段修了全长的,第二阶段修了剩下的,那么还剩下多少米没有完成?
13.某连锁商场2020年盈利达640万元,其中上半年盈利是全年盈利的,第四季度盈利是上半年盈利的。该连锁商场2020年第四季度盈利多少万元?
14.《庄子•天下篇》中有一句话:“一尺之梗,日取其半,万世不竭。”意思就是:一根一尺(尺,中国古代长度单位)长的木棒,今天取它的一半,即,明天取它一半的一半,后天取它一半的一半的一半……这样取下去,永远也取不完。这根木棒是一个长度有限的物体,但它却可以无限地分割下去。假如一根木棒刚好长4米,照这样的取法,第4天取的长度是多少米?
15.小红有48枚邮票,小新的邮票数是小红的,小明的邮票数是小新的,小明有多少枚邮票?
16.动物园的飞禽馆里有20只孔雀,鸵鸟的只数是孔雀的,金雕的只数是鸵鸟的。金雕有多少只?
17.植树队准备种1200棵树,第一天种了总数的,第二天种的棵数是第一天的,第二天种了多少棵树?
18.三个同学踢毽子,小明踢了96个,小强踢的数量是小明的,小亮踢的数量是小强的,小亮踢了多少个?
19.学校花坛中有24盆红花,黄花是红花的,紫花是黄花的,紫花有多少盆?
20.一个空罐可盛8碗水或6杯水,如果将3碗水和2杯水一起倒入空罐中,水面应该达到整个空罐几分之几的位置?
21.某校参加数学竞赛的男生与女生的人数比是6∶5,后来又增加了5名女生,这时女生人数正好是全班的一半。原来参加数学竞赛的女生有多少人?
22.李师傅3天做完一批零件,第一天做的是第二天的,第三天做的是第二天的,已知第三天比第一天多做30个零件,这批零件一共有多少个?
23.一项工程,甲队独做10天完成,乙队独做15天完成,甲队先做2天后,剩下的有两队合做,还要多少天可以完成任务?
24.六(1)班女生人数比全班人数的多2人,男生有22人,全班有多少人?
25.一项工程,甲队单独完成需要60天。若甲队先单独做18天,则剩余的甲、乙两队合作24天可以完成。乙队单独完成这项工程需要多少天?
26.甲、乙两车同时从A、B两地出发,相向而行,经过5小时相遇,相遇后两车又行驶了3小时,这时甲车离B地还有230千米,乙车离A地还有160千米,求A、B两地的距离是多少千米?
27.甲乙两车分别从A、B两地相向而行,甲车行驶了1.5小时乙车才开始出发,乙车以80千米/时的速度行2.5小时与甲车相遇。甲车中途休息了1小时,当两车相遇时,甲所行驶的路程占AB两地总路程的,甲车的行驶速度是多少千米?
28.一辆汽车从甲地开往乙地,行了全程的,这时离中点站还有45千米。甲乙两地相距多少千米?
29.一项工程,甲队独做20天完成,乙队独做每天完成.如果甲先独做5天,然后两队合做,还需多少天才能完成?
30.幸福里小学上学期六年级女生人数是男生的,下学期转来3名女生,这时女生人数是男生人数的。阳光小学下学期六年级男生比女生多多少人?
31.一辆卡车和一辆客车分别从甲、乙两城同时出发,相向而行,卡车到达乙城后立即返回,客车到达甲城后也立即返回,已知卡车和客车的速度比为,两车第一次相遇地点距离第二次相遇地点24千米,求甲、乙两城相距多少千米?
32.加工一批零件,已完成个数与零件总个数的比是1∶5,如果再加工15个,那么完成个数与剩下的个数同样多,这批零件共有多少个?
33.一件工作,由甲单独做要15天完成,现在由甲、乙两人各做3天后,余下的工作由乙单独做。如果甲、乙两人工作效率的比是2∶3,乙完成这件工作还需要多少天?
34.小红、小英和小明三位小朋友储蓄钱数的比是,他们储蓄的平均钱数是320元。小英储蓄了多少钱?
35.客车和货车同时从甲、乙两地相对开出,相遇时客车和货车所行的路程比是,相遇后货车提高速度,比相遇前每小时多行35千米,客车仍按原速前进,结果两车同时到达目的地。已知客车从甲地到乙地一共用了6.5小时,甲、乙两地相距多少千米?
36.一辆客车和一辆货车上午8:00同时分别从甲、乙两地出发相向而行,客车每小时行驶60千米,当行驶了全程的时与货车相遇。已知货车行驶完全程要8小时,两车相遇是什么时刻?甲、乙两地间的路程是多少千米?
37.某商场需要制作一块广告牌,请来师徒两位工人。已知师傅单独完成需8天,徒弟单独完成需12天,现由师傅先做3天,再由两人合作。
(1)还需要几天才能完成任务?
(2)完成后两人共得工钱1600元,如果按两人完成的工作量分配工钱,那么师徒两人各应得工钱多少元?
38.小汽车与货车同时从甲、乙两地相对开出,当货车行了全程的时,小汽车行了全程的少10千米,这时已行的路程与剩下路程的比是3∶5。甲、乙两地相距多少千米?
39.从甲地到乙地,客车只需要4小时,从乙地到甲地,货车需要5小时。现在两车同时从甲乙两地出发相向而行。
(1)两车相遇需要多少小时?并在图上表示相遇的大致位置。
(2)2小时后两车相距20千米,甲乙两地相距多少千米?
40.有一条线段AB,以端点A为起点量出全长的在线段上做记号M,以端点B为起点量出全长的在线段上做记号N。如果M和N之间的长度是14cm,那么整条线段AB的长度是多少?
41.下图是李大叔种植各种蔬菜面积的扇形统计图。
(1)填写扇形统计图中的百分比。
(2)已知茄子的种植面积是175m2,青椒的种植面积是( )m2。
(3)在扇形统计图中,表示茄子的圆心角是( )。
42.王阿姨上个月的工资,分成了如下五个部分。
类别
伙食费
水电费
还贷款
储蓄
其他
百分比
22%
10%
36%
16%
16%
(1)请在上图中把王阿姨上个月的各项费用情况填完整。
(2)已知王阿姨的还贷款比伙食费多用了770元。请问王阿姨上个月的工资共多少元?
43.如下图,地面上平躺着一个半径为0.5米的球。如果要将这个球滚到墙边,需要转动几圈?
44.如图中圆的周长是25.12厘米,圆的面积与长方形的面积正好相等,则图中阴影部分的周长是多少厘米?(π取3.14)
45.下图是学校的运动场。
(1)如果在阴影部分铺塑胶跑道,每平方米100元,则一共花多少钱?
(2)笑笑和淘气分别从A、B出发,沿半圆跑到C、D,笑笑跑内圈,淘气跑外圈,两人跑过的路程差是多少米?
(3)笑笑和淘气同时从内道的相同起点进行同向跑步,淘气的速度是笑笑的120%,从起点出发后淘气第一次追上笑笑需要5分钟,那么笑笑的速度是多少?
46.如图,已知三角形OAB的面积是18平方厘米,求阴影部分的面积.
47.如图,用两个完全相同的正方形拼成一个长方形,图1是在长方形内所作的最大半圆,图2是长方形外的最小半圆。
我们知道:
①图1中,长方形的面积与半圆的面积比为 。
②图2中,半圆的面积与长方形的面积比为 。
请从上面两个结论中选择一个,写出你的证明过程。
48.一个圆形餐桌桌面的直径是2m.
(1)它的面积是多少平方米?
(2)如果在这张餐桌的中央放一个半径是0.8m的圆形转盘,剩下的桌面面积是多少平方米?(结果保留两位小数)
49.李叔叔家用篱笆靠墙围了一个半圆形小院,小院的直径是12m.
(1)围这个小院需要多长的篱笆?
(2)如果要扩建这个小院,把它的直径增加2m,这个小院的面积增加了多少平方米?
50.笑笑和淘气分别从A、B处出发,沿半圆走到C、D.
将他们两人走过的路程相关答案填入以下空中:
(1)笑笑所走过的路线的半径为10米,她走过的路程是_____m.
(2)淘气所走过的路线的半径为_____米,他走过的路程是_____m
(3)若淘气与笑笑比赛跑步,淘气的起跑线应该比笑笑提前_____m.
51.某公司计划进一批原材料,原来每吨的价格是200元,现在每吨的价格上涨了25%。原计划进100吨原材料的钱,现在只能进多少吨?
52.二进制时钟是一种“特殊的时钟”,它用4行6列24盏灯来表示时间(图1)竖着看,从左到右每两列为一组,每列依次表示时、分、秒的十位数字和个位数字;每列从下往上的灯依次表示1、2、4、8(表示灯亮,○表示灯熄灭,灯灭代表0),同一列中多盏灯同时亮,要把它们各自表示的数加起来得到对应的数。例如,图1中最右侧一列,从下往上第一、二、三盏灯是,分别表示数字1、2、4,1+2+4=7,此时这列灯表示数字7,按照这样的表示方法,请在图2的括号里写出此时时钟表示的时刻。图3是雯雯同学上午进入校门的时刻,请涂出二进制时钟上的显示。
53.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。(如图所示)
(1)填写下列表格。想一想,这些数量之间有什么关系?
大正方形每边的块数
3
黑瓷砖块数
8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块?
54.规定:如图1中,方格里的数表示在其周围8个方格中共有多少个△。即以“1”为中心,在它的四周8个方格中只能有1个△;以“2”为中心,在它的四周8个方格中只能有2个△;以“3”为中心,在它的四周8个方格中只能有3个△;依此类推。
按上述规定,在如图2中一共可以画12个△。现在已经画好了其中的2个,请你在合适的空格中补上其余的10个。
55.如图,堆三角形积木。
①如果下层放6个,一共需要多少个三角形?
②如果有169个三角形积木块,下层应放几个?
56.下面的算式是按照某种规律排列的∶
1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17…
(1)第13个算式的得数是多少?
(2)第2019个算式是什么?
57.请根据下图中的规律,按要求回答问题。
(1)在下表中完整地填写③、④号图的相关数据。
图号
①
②
③
④
白色三角形个数
0
1
黑色三角形个数
1
3
总个数
(2)根据以上的信息,你发现了什么规律?
(3)当黑色三角形个数比白色三角形个数多10个时,白色三角形和黑色三角形的总个数是多少个?黑色的多少个?
58.通过计算并观察①②③小题,猜想出④的结果,写出你的发现,并用图形进行说明。
①
②+
③…
则:④
发现:____________________________________________________
说明:
59.根据下列信息回答问题.
印刷厂的纸是以“令”来卖的.一令是500张.最普通的纸张是A4纸.A系列纸张是以A0尺寸为基础的,而A4纸是其中的一部分.一张A0纸的规格为1189毫米×841毫米,差不多有1平方米.如右图所示,A1纸是A0纸的一半,A2纸是A1纸的一半,A3纸是A2纸的一半,等等.
(1)需要多少张A4纸才能覆盖住一张A0纸?( )
①8 ②16 ③32 ④64
(2)—张A5纸较长那条边的长度大约是多少?( )
①420mm ②297mm ③210mm ④149mm
60.有苹果、梨、桃、枣四种水果,已知苹果和梨占总重量的,梨和桃占总重量的45%,枣占总重量的30%,又知桃比苹果多42千克。枣有多少千克?
61.中国民航总局规定:乘坐飞机经济舱旅客一人最多免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票,一名旅客带了40千克行李乘机,机票连同行李费共付1560元,机票价钱是多少元?
62.明明要将一个15GB的影音文件下载到自己的电脑里。他查了一下C盘和E盘的属性,发现以下信息:
C盘总容量59.6GB,已用空间占;
E盘已用空间127.5GB,未用空间占15%。
(1)明明将文件保存到哪个盘里合适?
(2)明明下载时,前4分钟下载20%,照这样的速度,还要几分钟才能下完?
63.一份稿件,打字员第一天打了总数的,第二天打了总数的40%,还剩70页未打,这份稿件有多少页?
64.有一款手机原价4500元,现在商店进行降价促销活动。李叔叔是商店降价促销活动时第21位购买该款手机的顾客。他买这款手机实际付了多少钱?
65.新星希望小学为了建设书香校园,从图书超市购进了科技类丛书400套,比购进的故事类丛书多,购进的连环画册又是购进故事类丛书的75%,学校购进多少套连环画册?
66.修路队修一段路,第一天修了这段路全长的45%,第二天修了这段路全长的。
(1)两天共修了510米,这段路全长多少米?
(2)第一天比第二天多修30米,这段路全长多少米?
67.一瓶洗衣液,第一周用了总量的,第二周用了总量的20%,还剩2.2升,这瓶洗衣液原有多少升?
68.一列火车的速度是180千米时,是一架喷气式飞机的。一辆小汽车的速度是这架喷气式飞机的。这辆小汽车的速度是多少?
69.两桶油共重130千克,从甲桶取出25%倒入乙桶后,甲桶相当于乙桶的,甲、乙两桶原来各有油多少千克?
70.《道路交通安全法》实施条例规定:所有道路超速50%以上,扣12分;高速公路、城市快速路超速20%以上、50%以下,扣6分;高速公路、城市快速路超速20%以下,扣3分。王叔叔以90千米/时的速度在高速公路上行驶,前方出现限速80千米的标志。如果他保持这个速度继续行驶,将受到扣几分的处罚?
【参考答案】
1.120棵
【解析】
将一班植树棵数看作单位“1”,用一班植树棵数×二班对应分率,求出二班植树棵数,再将二班植树棵数看作单位“1”,用二班植树棵数×三班对应分率,就是三班植树棵数,据此列出综合算式解答
解析:120棵
【解析】
将一班植树棵数看作单位“1”,用一班植树棵数×二班对应分率,求出二班植树棵数,再将二班植树棵数看作单位“1”,用二班植树棵数×三班对应分率,就是三班植树棵数,据此列出综合算式解答即可。
160××=120(棵)
答:三班植树120棵。
【点睛】
关键是确定单位“1”,求一个数的几分之几是多少用乘法。
2.500千米/时
【解析】
磁悬浮列车的运行速度比超音速飞机的飞行速度少,把超音速飞机的飞行速度看作单位“1”, 磁悬浮列车的速度是它的(1-),用超音速飞机的飞行速度乘这个分率,可求出磁悬浮列车的运
解析:500千米/时
【解析】
磁悬浮列车的运行速度比超音速飞机的飞行速度少,把超音速飞机的飞行速度看作单位“1”, 磁悬浮列车的速度是它的(1-),用超音速飞机的飞行速度乘这个分率,可求出磁悬浮列车的运行速度。
磁悬浮列车的速度:
1500×(1-)
=1500×
=500(千米/时)
答:磁悬浮列车的速度是500千米/时。
【点睛】
找准单位“1”的量是解此题的关键。
3.3200元
【解析】
先利用乘法求出爸爸妈妈的工资和,再将其乘(1-),求出李红家每月大约能结余多少元。
(4500+3500)×(1-)
=8000×
=3200(元)
答:李红家每月大约能结余3
解析:3200元
【解析】
先利用乘法求出爸爸妈妈的工资和,再将其乘(1-),求出李红家每月大约能结余多少元。
(4500+3500)×(1-)
=8000×
=3200(元)
答:李红家每月大约能结余3200元。
【点睛】
本题考查了分数乘法的应用,求一个数的几分之几是多少,用乘法。
4.六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:2
解析:六(1)班;8人
【解析】
已知一个数,求这个数的几分之几是多少用分数乘法计算,求出六(1)班和六(2)班的人数,最后比较大小求出两班的人数差即可。
六(1)班:240×=48(人)
六(2)班:240×=40(人)
因为48人>40人,所以六(1)班的人数多。
48-40=8(人)
答:六(1)班的人数多,多8人。
【点睛】
利用分数乘法求出两班的人数是解答题目的关键。
5.5千克
【解析】
根据求一个数的几分之几是多少,用乘法解答即可。
60×=5(千克)
答:这堆煤比原来少了5千克。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
解析:5千克
【解析】
根据求一个数的几分之几是多少,用乘法解答即可。
60×=5(千克)
答:这堆煤比原来少了5千克。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
6.144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没
解析:144页
【解析】
把这本故事书看作单位“1”,已经看了全书的,则还有全书的1-=没有读,根据分数乘法的意义,用乘法进行解答即可。
360×(1-)
=360×
=144(页)
答:还剩下144页没有看。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
7.40人
【解析】
六年级原有学生238人,后来六年级转来2人,则现在六年级有238+2人,根据分数乘法意义,则其是(238+2)×人,则用六年级人数减五年级人数,即得五年级比六年级少多少人。
(23
解析:40人
【解析】
六年级原有学生238人,后来六年级转来2人,则现在六年级有238+2人,根据分数乘法意义,则其是(238+2)×人,则用六年级人数减五年级人数,即得五年级比六年级少多少人。
(238+2)—(238+2)
=240-240
=240—200
=40(人)
答:现在五年级比六年级少40人。
【点睛】
此题考查的是分数乘法的应用,完成本题关键是根据题意求出现在六年级的人数。
8.36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数
解析:36人
【解析】
把参加绘画组的人数看作单位“1”,参加书法组的同学是绘画组的,根据一个数乘分数的意义,用乘法解答。
(人)
答:参加书法组的同学有36人。
【点睛】
此题考查的目的是理解掌握一个数乘分数的意义及应用。
9.7杯
【解析】
升=1400毫升,用果汁的总升数除以每个玻璃杯的容量即可解答。
升=1400毫升
1400÷200=7(杯)
答:可以倒满7杯。
【点睛】
解答本题的关键是先进行单位换算,再看140
解析:7杯
【解析】
升=1400毫升,用果汁的总升数除以每个玻璃杯的容量即可解答。
升=1400毫升
1400÷200=7(杯)
答:可以倒满7杯。
【点睛】
解答本题的关键是先进行单位换算,再看1400毫升里面有多少个200毫升。
10.90页
【解析】
第一天和第二天共看了这本书的(+),求一个数的几分之几是多少,用乘法,200×(+)即可求出慧慧两天一共看的页数。
200×(+)
=200×(+)
=200×
=90(页)
答:
解析:90页
【解析】
第一天和第二天共看了这本书的(+),求一个数的几分之几是多少,用乘法,200×(+)即可求出慧慧两天一共看的页数。
200×(+)
=200×(+)
=200×
=90(页)
答:慧慧这两天一共看了90页。
【点睛】
此题的解题关键是掌握求一个数的几分之几是多少的计算方法。
11.32棵
【解析】
根据求一个数的几分之几是多少,用乘法先求出桃树的棵树,然后再根据乘法求出枇杷树的棵树即可。
120××
=80×
=32(棵)
答:王乐家一共有枇杷树32棵。
【点睛】
本题考查求
解析:32棵
【解析】
根据求一个数的几分之几是多少,用乘法先求出桃树的棵树,然后再根据乘法求出枇杷树的棵树即可。
120××
=80×
=32(棵)
答:王乐家一共有枇杷树32棵。
【点睛】
本题考查求一个数的几分之几是多少,明确用乘法是解题的关键。
12.240米
【解析】
第一阶段修了全长的,还剩全长的1-=,根据求一个数的几分之几是多少用600×(1-)=400(米),第二阶段修了剩下的,还剩1-=,求400的即是还没有完成的,用400×(1-)
解析:240米
【解析】
第一阶段修了全长的,还剩全长的1-=,根据求一个数的几分之几是多少用600×(1-)=400(米),第二阶段修了剩下的,还剩1-=,求400的即是还没有完成的,用400×(1-)。据此解答。
方法一:
(米)
答:还剩下240米没有完成。
方法二:
(米)
(米)
(米)
答:还剩下240米没有完成。
【点睛】
解答此题的关键是先求出第一阶段修了后还剩的长度,再根据分数乘法的意义解答。
13.140万元
【解析】
将全年盈利看作单位“1”,全年盈利×上半年盈利对应分率=上半年盈利,将上半年盈利看作单位“1”,上半年盈利×第四季度盈利对应分率=第四季度盈利,据此分析。
640××=140(
解析:140万元
【解析】
将全年盈利看作单位“1”,全年盈利×上半年盈利对应分率=上半年盈利,将上半年盈利看作单位“1”,上半年盈利×第四季度盈利对应分率=第四季度盈利,据此分析。
640××=140(万元)
答:该连锁商场2020年第四季度盈利140万元。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
14.米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
解析:米
【解析】
将木棒长度看作单位“1”,用木棒长度连续乘4次即可。
4××××=(米)
答:第4天取的长度是米。
【点睛】
关键是确定单位“1”,整体数量×部分对应分率=部分数量。
15.30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
解析:30枚
【解析】
小新的邮票数=小红的邮票数×,小明的邮票数=小新的邮票数×,据此解答。
48××=30(枚)
答:小明有30枚邮票。
【点睛】
已知一个数,求这个数的几分之几用乘法。
16.12只
【解析】
已知禽馆里有20只孔雀,鸵鸟的只数是孔雀的,根据分数乘法的意义,用乘法即可求出鸵鸟的只数,金雕的只数是鸵鸟的,然后用鸵鸟的只数×=金雕的只数,据此解答即可。
=18×
=12(只
解析:12只
【解析】
已知禽馆里有20只孔雀,鸵鸟的只数是孔雀的,根据分数乘法的意义,用乘法即可求出鸵鸟的只数,金雕的只数是鸵鸟的,然后用鸵鸟的只数×=金雕的只数,据此解答即可。
=18×
=12(只)
答:金雕有12只。
【点睛】
本题考查连续求一个数的几分之几是多少,明确用乘法是解题的关键。
17.600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,
解析:600棵
【解析】
将总棵数看作单位“1”,总棵数×第一天种的对应分率×第二天种的对应分率=第二天种的棵数。
1200××=600(棵)
答:第二天种了600棵树。
【点睛】
关键是确定单位“1”,理解分数乘法的意义。
18.40个
【解析】
根据题意,已知小强的数量是小明的,用小明踢了数量×,求出小强踢的数量,小亮踢的数量是小强的,再用小强踢的数量×,即可求出小亮踢的数量。
96××
=60×
=40(个)
答:小亮踢
解析:40个
【解析】
根据题意,已知小强的数量是小明的,用小明踢了数量×,求出小强踢的数量,小亮踢的数量是小强的,再用小强踢的数量×,即可求出小亮踢的数量。
96××
=60×
=40(个)
答:小亮踢了40个。
【点睛】
本题考查求一个数的几分之几是多少。
19.12盆
【解析】
黄花的盆数=红花的盆数×,紫花的盆数=黄花的盆数×,则紫花的盆数=红花的盆数××,据此解答。
24××
=18×
=12(盆)
答:紫花有12盆。
【点睛】
连续求一个数的几分之几
解析:12盆
【解析】
黄花的盆数=红花的盆数×,紫花的盆数=黄花的盆数×,则紫花的盆数=红花的盆数××,据此解答。
24××
=18×
=12(盆)
答:紫花有12盆。
【点睛】
连续求一个数的几分之几是多少,用分数连乘计算。
20.【解析】
把这个空罐的总高度看作单位“1”,1碗水的高度占总高度的,1杯水的高度占总高度的,用乘法求出3碗水占总高度的分率,2杯水占总高度的分率,最后相加求和。
×3+×2
=+
=
答:水面应该
解析:
【解析】
把这个空罐的总高度看作单位“1”,1碗水的高度占总高度的,1杯水的高度占总高度的,用乘法求出3碗水占总高度的分率,2杯水占总高度的分率,最后相加求和。
×3+×2
=+
=
答:水面应该达到整个空罐的位置。
【点睛】
求出1碗水和3杯水各占总高度的分率是解答题目的关键。
21.25人
【解析】
由题意知,男生人数没有变,可将男生人数看作单位“1”,原来的女生人数就是男生的,增加5名女生后,女生人数是全班的一半,也就是男女生人数相等,由此求出男生人数:5÷(1-),再根据原
解析:25人
【解析】
由题意知,男生人数没有变,可将男生人数看作单位“1”,原来的女生人数就是男生的,增加5名女生后,女生人数是全班的一半,也就是男女生人数相等,由此求出男生人数:5÷(1-),再根据原来男女生的人数比求出原来的女生人数。
5÷(1-)×
=5÷×
=30×
=25(人)
答:原来参加数学竞赛的女生有25人。
【点睛】
找出增加的5名女生是男生的几分之几是解答此题的关键。
22.174个
【解析】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个.
解析:174个
【解析】
30÷(﹣)×(+1+)
=30÷×
=60×
=174(个)
答:这批零件一共有174个.
23.8天
【解析】
解析:8天
【解析】
24.60人
【解析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-,用男生人数÷对应分率即可。
(22+2)÷(1-)
=24÷
=60(人)
答:全班有60人。
【点睛】
关键是确定单位
解析:60人
【解析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-,用男生人数÷对应分率即可。
(22+2)÷(1-)
=24÷
=60(人)
答:全班有60人。
【点睛】
关键是确定单位“1”,找到部分数量以及对应分率。
25.80天
【解析】
根据题意可知,工作总量为单位“1”,甲队的工作效率为,则甲队单独做18天后,剩下总量的1-×18,再除以甲、乙两队合作的工作时间即可求出工作效率之和,再减去甲队的工作效率即可求出乙
解析:80天
【解析】
根据题意可知,工作总量为单位“1”,甲队的工作效率为,则甲队单独做18天后,剩下总量的1-×18,再除以甲、乙两队合作的工作时间即可求出工作效率之和,再减去甲队的工作效率即可求出乙队的工作效率,进而解答即可。
(1-×18)÷24-
=÷24-
=-
=;
1÷=80(天);
答:乙队单独完成这项工程需要80天。
【点睛】
解答本题的关键是明确甲队的工作效率,进而根据工作效率、工作时间和工作总量之间的关系求出乙队的工作效率,从而进一步解答。
26.975千米
【解析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之
解析:975千米
【解析】
根据题意,甲、乙两车5小时行完全程,则两车每小时共行全程的。相遇后两车又行驶了3小时,行驶了全程的。把全程看作单位“1”,则两车剩下的路程共占全程的(1-),用两车剩下的路程之和除以(1-)即可求出全程。
×3=
(230+160)÷(1-)
=390÷
=975(千米)
答:A、B两地的距离是975千米。
【点睛】
已知一个数的几分之几是多少,求这个数,用除法计算。明确“两车每小时共行全程的”和“两车剩下的路程共占全程的(1-)”是解题的关键。
27.50千米/时
【解析】
当甲乙相遇时,甲乙两车的路程和恰好等于AB两地的总路程。据此先利用减法求出乙路程占总路程的几分之几,再用乙路程除以它占总路程的几分之一求出总路程,从而利用乘法求出甲路程。分析
解析:50千米/时
【解析】
当甲乙相遇时,甲乙两车的路程和恰好等于AB两地的总路程。据此先利用减法求出乙路程占总路程的几分之几,再用乙路程除以它占总路程的几分之一求出总路程,从而利用乘法求出甲路程。分析题意,甲先是行驶了1.5小时,中途停了1小时,所以后续又是行驶了1.5小时,共行驶了3小时。用甲路程除以甲行驶的时间,求出甲的速度即可。
总路程:
80×2.5÷(1-)
=200÷
=350(千米)
甲路程:350×=150(千米)
甲速度:
150÷(1.5+2.5-1)
=150÷3
=50(千米/时)
答:甲车的行驶速度是50千米/时。
【点睛】
本题考查了相遇问题,相遇时甲乙两车的路程和恰好等于总路程。
28.360千米
【解析】
把全程看作单位“1”,甲地到中点站的距离为全程的,全程的处离中点站还有45千米,也就是全程的比全程的多45千米,用对应量÷对应分率=单位“1”即可求出甲乙两地的距离。
45÷(
解析:360千米
【解析】
把全程看作单位“1”,甲地到中点站的距离为全程的,全程的处离中点站还有45千米,也就是全程的比全程的多45千米,用对应量÷对应分率=单位“1”即可求出甲乙两地的距离。
45÷()
=45÷
=360(千米)
答:甲乙两地相距360千米。
【点睛】
找到对应量和对应分率是解答求单位“1”这类问题的关键。
29.9天
【解析】
(1﹣×5)÷()
=÷
=×
=9(天)
答:如果甲先独做5天,然后两队合做,还需9天才能完成.
解析:9天
【解析】
(1﹣×5)÷()
=÷
=×
=9(天)
答:如果甲先独做5天,然后两队合做,还需9天才能完成.
30.18人
【解析】
男生人数不变,则转来的3名女生占男生的,据此求出六年级男生人数,再根据下学期男生比女生多的人数占男生人数的七分之一,求出多的人数即可。
=3÷
=126(人)
126
=
=18
解析:18人
【解析】
男生人数不变,则转来的3名女生占男生的,据此求出六年级男生人数,再根据下学期男生比女生多的人数占男生人数的七分之一,求出多的人数即可。
=3÷
=126(人)
126
=
=18(人)
答:阳光小学下学期六年级男生比女生多18人。
【点睛】
本题考查分数乘除法,解答本题的关键是理解转来的3名女生占男生人数的几分之几。
31.84千米
【解析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是 ,用24除以路程差,就是两倍的城市距
解析:84千米
【解析】
两车第一次相遇后到第二次相遇,这之间一共行驶了两倍的两城市之间的距离长度,已知卡车与客车的速度比是4∶3,即路程比是4∶3,则两车的路程差是 ,用24除以路程差,就是两倍的城市距离,再除以2即可。
24÷()÷2
=24÷ ÷2
=84(千米)
答:甲、乙两城相距84千米。
【点睛】
此题考查了学生对多次相遇问题的理解能力及其比的应用,关键是找出数量对应的分率。
32.50个
【解析】
设这批零件共有x个,根据已完成个数与零件总个数的比是1∶5,可知完成的占总个数的,没完成的占1-,完成了x个,没完成(1-)x个,根据完成的个数+15=没完成的个数-15,列出方程
解析:50个
【解析】
设这批零件共有x个,根据已完成个数与零件总个数的比是1∶5,可知完成的占总个数的,没完成的占1-,完成了x个,没完成(1-)x个,根据完成的个数+15=没完成的个数-15,列出方程解答即可。
解:设这批零件共有x个。
x+15=(1-)x-15
x+15=x-15
x=30
x=50
答:这批零件共有50个。
【点睛】
关键是通过比确定完成和没完成的对应分率,找到等量关系,从而列出方程进行解答。
33.5天
【解析】
甲的工作效率是,根据甲、乙的工作效率之比,求出乙的工作效率是,甲、乙两人各做3天后,还剩下,交给乙单独做还需要5天。
(天)
答:乙完成这件工作还需要5天。
【点睛】
工程
解析:5天
【解析】
甲的工作效率是,根据甲、乙的工作效率之比,求出乙的工作效率是,甲、乙两人各做3天后,还剩下,交给乙单独做还需要5天。
(天)
答:乙完成这件工作还需要5天。
【点睛】
工程问题,主要是利用工作效率、工作时间、工作总量的关系求解,。
34.360元
【解析】
他们储蓄的平均钱数是320元,那么总共是960元,小红、小英和小明的钱数分别是1份、3份和4份,8份是960元,1份是120元。
(元)
(元)
答:小英储蓄了360元钱。
解
展开阅读全文