资源描述
2022年人教版小学四4年级下册数学期末解答质量检测试卷含答案word
1.把9千克桃子平均分给4只小猴子,每只小猴子分得几千克桃子?
2.明明上半身长45cm,身高是105cm,明明的上半身长是下半身长的几分之几?
3.甲队6天共修路5千米,乙队每天修路千米,甲队比乙队平均每天少修路多少千米?
4.把5块月饼平均给4个小朋友,每个小朋友分得多少块?(先画图表示出分得的结果,再列式计算。)
5.(1)填表。
a
30
7
8
15
6
1
b
15
13
12
10
9
13
a与b的乘积
450
91
96
150
a与b的最大公因数
15
1
4
a与b的最小公倍数
30
91
24
(2)观察比较a与b的乘积与最大公因数和最小公倍数的关系,你发现了什么?将发现的规律写下来。
(3)根据上面的发现,如果a与b的积是300,a与b的最大公因数是5,那么a与b的最小公倍数是( )。
6.五(1)班有多少名同学?
7.向前小学五年级有70多名同学。同学们分组参加植树活动,每4名同学一组或者每6名同学一组都正好分完。向前小学五年级有多少名同学?
8.某公司打算用下图的瓷砖铺地面。如果要铺一个正方形(铺地而的地砖均为整块),正方形的边长最小是多少厘米?
9.在“清理白色垃圾,倡导低碳生活”的活动中,五(1)班同学清理塑料垃圾千克,五(2)班同学比五(1)班多清理千克。五(1)班和五(2)班同学一共清理塑料垃圾多少千克?
10.食堂运来一车煤共吨,上午用去了,下午比上午多用去总数的,还剩吨。
(1)一共用去了这车煤的几分之几?
(2)用去了多少吨?
11.一瓶1升的饮料,小刚第一次喝了升,第二次喝了升。小刚两次共喝了多少升饮料?
12.工程队修一条公路,第一天修了千米,比第二天少修千米。这个工程队两天共修了多少千米?
13.一个长方体油箱,底面是一个正方形,边长是3分米,里面已盛油54升,已知里面油的深度是油箱深度的,油与油箱内壁的接触面是多少平方分米?
14.一个花坛(如下图),高0.8米,底面是边长1.1米的正方形,四周用木条围成。
(1)这个花坛占地多少平方米?
(2)用泥土填满这个花坛的,大约需要泥土多少立方米?(木条的厚度忽略不计)
(3)做这样一个花坛,四周大约需要木条多少平方米?
15.做一个长方体铁皮油箱,长10分米,宽8分米,高7分米,做这个油箱至少需要铁皮多少平方分米?这个铁皮油箱最多能装多少千克油?(每升油重0.83千克)
16.某体育馆要修建一个长20米,宽8米,深2米的泳池。
(1)这个泳池占地多少平方米?
(2)挖出的沙土需要车辆运走,一辆汽车每次运送25立方米的沙土,至少需要几次才能运送完?
(3)给泳池的四周和底面做防水漆,那么涂漆的面积是多少?
17.一个长方体水箱,从里面量长、宽,水深,把一块石头放入水中(水面没过石头),水位上升到,这块石头的体积是多少?
18.一个正方体玻璃缸,棱长5dm,用它装满水,再把水全部倒入一个底面积为的长方体玻璃水槽中,槽内水的深度是多少分米?(玻璃的厚度忽略不计)
19.一个长方体的玻璃缸,从里面量长是20cm宽是15cm,高是10cm,缸里的水深8cm,将一块石头放入缸里完全浸没,溢出了100mL的水,这块石头的体积是多少立方厘米?
20.如图,一块长方形铁皮长30厘米,宽20厘米,如果在这块铁皮的四个角都剪下一个边长5厘米的正方形,焊接成一个无盖长方体铁盒(忽略铁皮厚度),将铁盒装满水。
(1)水的体积是多少立方厘米?
(2)如果将盒子里的水倒一部分到下面这个容器中,使铁盒中的水面和这个容器中的水面同样高,这个容器中的水高多少厘米?
21.请按要求画图形。
(1)请画出下面图形A的对称轴。
(2)请画出图形A先向右平移6格,再向下平移2格后的图形。
(3)画一个与图形A面积相等的平行四边形。
22.按要求画一画。
小船先向右平移6格,再向下平移5格。
23.(1)画出先把图A向右平移3格,再向下平移4格后的图形。
(2)以虚线为对称轴,画出图B的轴对称图形。
24.正确理解,熟练操作:(每个格的面积代表)。
(1)在方格纸上描出下列各点:A(0,1),B(0,7),C(5,1)。
(2)依次连接ABC三点后得到一个( )三角形,它的面积是( )。
(3)画出将三角形ABC向右平移6格后的三角形。
(4)三角形各点的位置表示为( , );( , );( , )。
25.有甲乙两种卡车,甲车每辆每次可运煤6吨,乙车每辆每次可运煤8吨,现有130吨煤,要求一次运完,而且每辆卡车都要满载,需甲、乙两种卡车各多少辆?请你设计几种不同的运算方案。(表中已经提供1种方案)
如果甲车每辆每次运费90元,乙车每辆每次运费100元,那么甲车和乙车各是几辆时,运费最低,是多少元?
甲车(辆)
乙车(辆)
方案一
19
2
方案二
方案三
方案四
方案五
26.小华骑车从家去相距5千米的图书馆借书,根据下面的统计图回答问题。
(1)小华去图书馆的路上停车( )分钟,在图书馆借书用了( )分钟。
(2)小华骑车从图书馆返回家的平均速度是多少?
27.一个无盖的长方体玻璃鱼缸,长5分米,宽4分米,高3分米,
(1)做这个鱼缸至少需要玻璃多少平方分米?
(2)在鱼缸里注入40升水,水深多少分米(玻璃的厚度,忽略不计)
(3)再往水里放入一些鹅卵石,水面上升了0.3分米,鹅卵石的体积一共是多少立方分米?
28.下面是王强统计的2020年“十一”期间龙门石窟和白马寺的游览人数的统计表。
①完成式统计图。
②根据统计图提出一个问题并回答。
“十一”期间龙门石窟和白马寺游览人数统计图
1.千克
【分析】
根据除法平均分的意义:用桃子的数量除以猴子的只数,即可求解。
【详解】
9÷4= (千克)
答:每只小猴分得千克桃子。
【点睛】
本题考查平均分的意义,以及分数与除法的关系。
解析:千克
【分析】
根据除法平均分的意义:用桃子的数量除以猴子的只数,即可求解。
【详解】
9÷4= (千克)
答:每只小猴分得千克桃子。
【点睛】
本题考查平均分的意义,以及分数与除法的关系。
2.【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
解析:
【分析】
根据题意,先求出下半身的长,用身高减去上半身长,再用上半身的长除以下半身的长,约分即可解答。
【详解】
45÷(105-45)
=45÷60
=
答:明明上半身长是下半身长的。
【点睛】
本题考查求一个数占另一个数的几分之几,用除法计算。
3.千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米
解析:千米
【分析】
根据工作总量÷工作时间=工作效率,先求出甲队平均每天修的长度,用乙队每天修的长度-甲队每天修的长度即可。
【详解】
-5÷6
=-
=-
=(千米)
答:甲队比乙队平均每天少修路千米。
【点睛】
异分母分数相加减,先通分再计算。
4.【分析】
4个小朋友一人一块,还剩下1块。将这一块平均分给四个小朋友,每人分得块,据此解答。
【详解】
4÷4=1(块)
1÷4=(块)
1+=(块)
答:每个小朋友分得块。
【点睛】
本题主要
解析:
【分析】
4个小朋友一人一块,还剩下1块。将这一块平均分给四个小朋友,每人分得块,据此解答。
【详解】
4÷4=1(块)
1÷4=(块)
1+=(块)
答:每个小朋友分得块。
【点睛】
本题主要考查分数的意义及分数与除法的关系。
5.(1)将详解
(2)a与b的乘积等于它们最大公因数与最小公倍数的乘积
(3)60
【分析】
(1)根据:积=因数×因数,求出乘积;将a和b分解因数,公有质因数是最大公因数和公有质因数与独有质因数乘积
解析:(1)将详解
(2)a与b的乘积等于它们最大公因数与最小公倍数的乘积
(3)60
【分析】
(1)根据:积=因数×因数,求出乘积;将a和b分解因数,公有质因数是最大公因数和公有质因数与独有质因数乘积是最小公倍数;
(2)将最大公因数与最小公倍数的乘积与a和b的乘积进行对比,从而得出规律;
(3)根据得到的规律,进行解答即可。
【详解】
(1)
a
30
7
8
15
6
1
b
15
13
12
10
9
13
a与b的乘积
450
91
96
150
54
13
a与b的最大公因数
15
1
4
5
3
1
a与b的最小公倍数
30
91
24
30
18
13
(2)a与b的乘积等于它们最大公因数与最小公倍数的乘积;
(3)300÷5=60
a与b的最小公倍数是60。
【点睛】
通过观察表格,得出规律,两个数的积=最大公因数×最小公倍数;再根据这个规律,进行解答问题。
6.48名
【分析】
4人一组或6人一组都正好分完,说明该班的人数即是4的倍数又是6的倍数,且是40多人,则找到符合条件的人数即可。
【详解】
4的倍数有:4、8、12、16、20、40、48……
6的
解析:48名
【分析】
4人一组或6人一组都正好分完,说明该班的人数即是4的倍数又是6的倍数,且是40多人,则找到符合条件的人数即可。
【详解】
4的倍数有:4、8、12、16、20、40、48……
6的倍数有:6、12、24、36、42、48……
则符合条件是48。
答:五(1)班有48名同学。
【点睛】
本题考查求两个数的公倍数,明确该班人数在40几人是范围是解题的关键。
7.72名
【分析】
根据题意可知,向前小学五年级的人数是4和6的公倍数,并且是70多名,先求出4和6的最小公倍数,再找出适合的数即可。
【详解】
4=2×2
6=2×3
4和6的最小公倍数2×2×3=
解析:72名
【分析】
根据题意可知,向前小学五年级的人数是4和6的公倍数,并且是70多名,先求出4和6的最小公倍数,再找出适合的数即可。
【详解】
4=2×2
6=2×3
4和6的最小公倍数2×2×3=12
12×6=72(名)
答:向前小学五年级有72名同学。
【点睛】
此题考查了有关公倍数的实际应用,先求出最小公倍数,再找出符合题意的数即可。
8.120厘米
【分析】
根据题意可知,要铺一个正方形,边长最小是多少厘米,就是求出60和40的最小公倍数,即可解答。
【详解】
60的倍数有:60、120、180、……
40的倍数有:40、80、12
解析:120厘米
【分析】
根据题意可知,要铺一个正方形,边长最小是多少厘米,就是求出60和40的最小公倍数,即可解答。
【详解】
60的倍数有:60、120、180、……
40的倍数有:40、80、120、160、……
60和40最小公倍数是120
正方形的边长最小是120厘米
答:正方形的边长最小是120厘米。
【点睛】
本题考查最小公倍数的求法,根据最小公倍数,求出正方形的边长。
9.3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清理的,求出两个班一共清理的塑料垃圾。
【详解】
=(千克)
答:五(1)班和五(2)班同学一共清理塑料垃圾3千
解析:3千克
【分析】
先利用加法求出五(2)班清理出来的塑料垃圾,再将其加上五(1)班同学清理的,求出两个班一共清理的塑料垃圾。
【详解】
=(千克)
答:五(1)班和五(2)班同学一共清理塑料垃圾3千克。
【点睛】
本题考查了分数加法的应用,正确理解题意并列式即可。
10.(1);(2)吨
【分析】
(1)根据加法的意义,用+先求出下午用去总数的几分之几,再加上即是一共用去了这车煤的几分之几;
(2)根据分数减法的意义,用总量减去还剩的,即是用去的量。
【详解】
(1
解析:(1);(2)吨
【分析】
(1)根据加法的意义,用+先求出下午用去总数的几分之几,再加上即是一共用去了这车煤的几分之几;
(2)根据分数减法的意义,用总量减去还剩的,即是用去的量。
【详解】
(1)++
=++
=
答:一共用去了这车煤的;
(2)-=(吨)
答:用去了吨。
【点睛】
此题考查的是分数加法的意义和分数减法的意义,分数不带单位表示分率,带单位表示一个具体的量,计算结果要化成最简分数。
11.升
【分析】
将两次喝的升数相加即可。
【详解】
+=(升);
答:小刚两次共喝了升饮料。
【点睛】
熟练掌握异分母分数加减法的计算方法是解答本题的关键。
解析:升
【分析】
将两次喝的升数相加即可。
【详解】
+=(升);
答:小刚两次共喝了升饮料。
【点睛】
熟练掌握异分母分数加减法的计算方法是解答本题的关键。
12.千米
【分析】
要求两天共修多少千米,根据题意,先求出第二天修了多少千米,加上第一天修的千米数得解。
【详解】
++
=+
=(千米)
答:这个工程队两天共修了千米。
【点睛】
本题考查分数加法的简
解析:千米
【分析】
要求两天共修多少千米,根据题意,先求出第二天修了多少千米,加上第一天修的千米数得解。
【详解】
++
=+
=(千米)
答:这个工程队两天共修了千米。
【点睛】
本题考查分数加法的简单应用,注意梳理题中的数量关系。
13.81平方分米
【分析】
先根据1立方分米=1升换算出油的体积是多少立方分米,然后用油的体积除以长方体油箱的底面积,即可得到油的深度,再根据长方体表面积计算公式求出油与油箱内壁的接触面积。
【详解】
解析:81平方分米
【分析】
先根据1立方分米=1升换算出油的体积是多少立方分米,然后用油的体积除以长方体油箱的底面积,即可得到油的深度,再根据长方体表面积计算公式求出油与油箱内壁的接触面积。
【详解】
54升=54立方分米
油的深度:
54÷(3×3)
=54÷9
=6(分米)
油与油箱内壁的接触面积:
3×6×4+3×3
=72+9
=81(平方分米)
答:油与油箱内壁的接触面积是81平方分米。
【点睛】
此题主要考查长方体的体积的计算方法的灵活应用.注意体积单位和容积单位的换算。
14.(1)1.21平方米;
(2)0.726立方米;
(3)3.52平方米
【分析】
(1)这个花坛占地面积就是求底面正方形的面积;
(2)用泥土填满这个花坛的,就是求这个长方体的体积的;
(3)四周大
解析:(1)1.21平方米;
(2)0.726立方米;
(3)3.52平方米
【分析】
(1)这个花坛占地面积就是求底面正方形的面积;
(2)用泥土填满这个花坛的,就是求这个长方体的体积的;
(3)四周大约需要木条的面积,就是求这个长方体的四个侧面的面积。
【详解】
(1)1.1×1.1=1.21(平方米)
答:这个花坛占地1.21平方米。
(2)1.1×1.1×0.8×
=0.968×0.75
=0.726(立方米)
答:大约需要泥土0.726立方米。
(3)1.1×0.8×4=3.52(平方米)
答:四周大约需要木条3.52平方米。
【点睛】
解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题。
15.412平方分米;464.8千克
【分析】
需要铁皮的面积也就是长方体的表面积,根据长方体的表面积=(长×宽+长×高+宽×高)×2,代入数据计算即可;长方体的体积=长×宽×高,据此求出油箱的容积乘每升
解析:412平方分米;464.8千克
【分析】
需要铁皮的面积也就是长方体的表面积,根据长方体的表面积=(长×宽+长×高+宽×高)×2,代入数据计算即可;长方体的体积=长×宽×高,据此求出油箱的容积乘每升油的重量即可。
【详解】
(10×8+10×7+8×7)×2
=(80+70+56)×2
=206×2
=412(平方分米);
10×8×7×0.83
=560×0.83
=464.8(千克)
答:做这个油箱至少需要铁皮412平方分米,这个铁皮油箱最多能装464.8千克油。
【点睛】
此题考查了有关长方体表面积和体积的实际应用,需牢记公式并能灵活运用。
16.(1)160平方米;
(2)13次;
(3)272平方米
【分析】
(1)要求泳池的占地面积就是求底面积;
(2)求建这个游泳池需挖掉多少泥土,用长方体的体积公式:体积=长×宽×高直接计算即可解答,
解析:(1)160平方米;
(2)13次;
(3)272平方米
【分析】
(1)要求泳池的占地面积就是求底面积;
(2)求建这个游泳池需挖掉多少泥土,用长方体的体积公式:体积=长×宽×高直接计算即可解答,再用总体积除以每次运的数量,即可求出需运多少次,如果出现有余数,剩下的还需再送一次需用进一法保留整数;
(3)求做防水漆的面积是多少平方米,也就是求四个侧面和一个底面的面积,据此代入数据计算即可解答。
【详解】
(1)20×8=160(平方米)
答:这个泳池占地160平方米。
(2)20×8×2
=160×2
=320(立方米)
320÷25≈13(次)
答:至少需要13次才能运送完。
(3)20×8+8×2×2+20×2×2
=160+32+80
=272(平方米)
答:涂漆的面积是272平方米。
【点睛】
本题主要考查长方体、表面积和体积的实际应用,解答此题应弄清要求的是什么,进而根据面积公式和体积计算方法,进行解答即可。
17.【分析】
水面上升到3分米,说明上升了:3-1.8=1.2分米。石头被水面完全没过,那么上升水对应的体积就等于石头的体积,求出高度为1.2的水的体积即可。
【详解】
=72×1.2
=86.4(
解析:
【分析】
水面上升到3分米,说明上升了:3-1.8=1.2分米。石头被水面完全没过,那么上升水对应的体积就等于石头的体积,求出高度为1.2的水的体积即可。
【详解】
=72×1.2
=86.4(dm³)
答:这块石头的体积是86.4立方分米。
【点睛】
此题需要注意的是关键字“上升到”,那么上升的高度=上升到的高度-原来水的高度。同时需要记住:上升水对应的体积=物体的体积。
18.25分米
【分析】
根据正方体的体积=棱长×棱长×棱长,求出水的体积,再除以长方体玻璃水槽的底面积即可。
【详解】
5×5×5÷20
=125÷20
=6.25(分米)
答:槽内水的深度是6.25分
解析:25分米
【分析】
根据正方体的体积=棱长×棱长×棱长,求出水的体积,再除以长方体玻璃水槽的底面积即可。
【详解】
5×5×5÷20
=125÷20
=6.25(分米)
答:槽内水的深度是6.25分米。
【点睛】
此题考查了长方体和正方体体积的综合运用,明确水的体积是不变的是解题关键。
19.700cm3
【分析】
由题意得:缸里的水深8cm而玻璃缸的高是10cm,则水面上升了2cm,石块的体积等于上升的水的体积加溢出水的体积,根据长方体的体积公式V=abh,即可列式解答。
【详解】
水
解析:700cm3
【分析】
由题意得:缸里的水深8cm而玻璃缸的高是10cm,则水面上升了2cm,石块的体积等于上升的水的体积加溢出水的体积,根据长方体的体积公式V=abh,即可列式解答。
【详解】
水面上升的体积:20×15×(10-8)
=300×2
=600(立方厘米)
100ml=100立方厘米
600+100=700(立方厘米)
答:这块石头的体积是700立方厘米。
【点睛】
本题考查求不规则物体的体积,明确石块的体积应等于水上升的体积加溢出水的体积是解题的关键。
20.(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=
解析:(1)3000立方厘米
(2)厘米
【分析】
(1)这个长方体铁盒的长为30cm,宽为20cm,高为5cm,长×宽×高求出水的体积;
(2)设这个容器中的水高为x厘米,等量关系为:铁盒倒出水的体积=容器中水的体积,据此列方程解答。
【详解】
(1)30×20×5
=600×5
=3000(立方厘米)
答:水的体积是3000立方厘米。
(2)解:设这个容器中的水高为x厘米,
30×20×(5-x)=10×5×x
12×(5-x)=x
60-12x=x
13x=60
x=
答:这个容器中的水高厘米。
【点睛】
列方程是解答应用题的一种有效的方法,解题的关键是弄清题意,找出应用题中的等量关系。
21.见详解
【分析】
(1)根据轴对称图形的意义:如果一个平面图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做这个图形的对称轴;
(2)根据平移的特征,把图形A
解析:见详解
【分析】
(1)根据轴对称图形的意义:如果一个平面图形沿一条直线对折后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做这个图形的对称轴;
(2)根据平移的特征,把图形A的各顶点分别向右平移6格,依次连结即可得到向右平移5格后的图形;用同样的方法即可把平移后的图形再向下平移2格后的图形;
(3)图形A的面积是由三角形面积加正方形面积的和,根据图形A的面积确定所画平行四边形的底和高,即可画图。
【详解】
(1)根据轴对称图形的意义画图如下:
(2)把这个平行四边形先向右移动6格再向下移动2格(图中红色部分)画出移动后的图形位置;
(3)图形A的面积:
4×2÷2+2×2
=4+4
=8(平方厘米)
根据平行四边形的面积为8平方厘米,可确定底为4厘米,高为2厘米(答案不唯一)。
【点睛】
此题考查的是平移、轴对称,掌握轴对称图形的意义及确定轴对称图形对称轴的条数及位置、平面图形面积的计算等是解题关键。
22.见详解
【分析】
根据平移的特征,把小船的各顶点分别向右平移6格,再向下平移5格,最后根据原图依次连接即可。
【详解】
画图如下:
【点睛】
本题主要考查作平移后的图形,平移作图要注意方向与距离。
解析:见详解
【分析】
根据平移的特征,把小船的各顶点分别向右平移6格,再向下平移5格,最后根据原图依次连接即可。
【详解】
画图如下:
【点睛】
本题主要考查作平移后的图形,平移作图要注意方向与距离。
23.见详解
【分析】
(1)根据平移的特征,把图A的各顶点分别向右平移3格,再向下平移4格,依次连结即可得到平移后的图形;
(2)根据轴对称图形的性质:在轴对称图形中,各对称点到对称轴的距离相等,据此先
解析:见详解
【分析】
(1)根据平移的特征,把图A的各顶点分别向右平移3格,再向下平移4格,依次连结即可得到平移后的图形;
(2)根据轴对称图形的性质:在轴对称图形中,各对称点到对称轴的距离相等,据此先描出各对称点的位置,然后顺次连接各点即可。
【详解】
(1)画出图A先向右平移3格,再向下平移4格后的图形(图中红色部分);
(2)以虚线为对称轴,画出图形B的轴对称图形(图中绿色部分)
【点睛】
此题考查的目的是理解掌握图形变换的方法及应用。
24.(1)见详解
(2)图形见详解,直角,15
(3)见详解
(4)(6,1);(6,7);(11,1)
【分析】
(1)根据用数对表示位置的方法,第一个数字表示列,第二个数字表示行,据此解答即可。
(
解析:(1)见详解
(2)图形见详解,直角,15
(3)见详解
(4)(6,1);(6,7);(11,1)
【分析】
(1)根据用数对表示位置的方法,第一个数字表示列,第二个数字表示行,据此解答即可。
(2)根据三角形的分类和三角形的面积公式进行判断和解答即可。
(3)将A、B、C、三个点向右平移6格后,然后顺次连接即可。
(4)根据用数对表示位置的方法,第一个数字表示列,第二个数字表示行,据此解答即可。
【详解】
(1)如图所示:
(2)依次连接ABC三点后,如图所示:
面积:5×6÷2
=30÷2
=15(平方厘米)
则依次连接ABC三点后得到一个直角三角形,它的面积是15。
(3)平移后的图形,如图所示:
(4)三角形各点的位置表示为(6,1);(6,7);(11,1)。
【点睛】
本题考查用数对表示位置的方法,明确第一个数字表示列,第二个数字表示行是解题的关键。
25.甲车3辆,乙车14辆;1670元;填表见详解
【分析】
设用甲卡车x辆,用x表示出乙车数量,通过字母表示的算式,确定取值范围;根据甲车运费×数量+乙车运费×数量=总运费,分别求出各方案费用,找出最低
解析:甲车3辆,乙车14辆;1670元;填表见详解
【分析】
设用甲卡车x辆,用x表示出乙车数量,通过字母表示的算式,确定取值范围;根据甲车运费×数量+乙车运费×数量=总运费,分别求出各方案费用,找出最低运费即可。
【详解】
解:设用甲卡车x辆。
则乙车=(130-6x)÷8
=(65-3x)÷4
=16-x
=16+
因为两车数量都是自然数,所以,1-3x必须是4的倍数,所以,
甲车3辆,乙车14辆;
甲车7,乙车11辆;
甲车11,乙车8辆;
甲车15,乙车5辆;
甲车19,乙车2辆。
甲车(辆)
乙车(辆)
方案一
19
2
方案二
15
5
方案三
11
8
方案四
7
11
方案五
3
14
方案一:19×90+2×100
=1710+200
=1910(元)
方案二:15×90+5×100
=1350+500
=1850(元)
方案三:11×90+8×100
=990+800
=1790(元)
方案四:7×90+11×100
=630+1100
=1730(元)
方案五:3×90+14×100
=270+1400
=1670(元)
答:甲车3辆,乙车14辆时,运费最低,是1670元。
【点睛】
运用未知数x表示出甲乙两车之间的关系,再根据两车数量都是自然数进行推算具体辆数,从而得到全部方案是解决本题的关键。
26.(1)20,40
(2)15千米/时
【分析】
在表示路程和时间的行程问题的折线统计图中,折线上升,表示向目的地运动;折线呈水平方向,表示在某地停留,折线下降,表示向出发地运动。据此可解答。
【详解
解析:(1)20,40
(2)15千米/时
【分析】
在表示路程和时间的行程问题的折线统计图中,折线上升,表示向目的地运动;折线呈水平方向,表示在某地停留,折线下降,表示向出发地运动。据此可解答。
【详解】
(1)40-20=20(分钟),100-60=40(分钟)
小华去图书馆的路上停车(20)分钟,在图书馆借书用了(40)分钟。
(2)120-100=20(分钟)=(小时)
5÷=15(千米/时)
答:小华骑车从图书馆返回家的平均速度是15(千米/时)。
【点睛】
本题考查有关行程的折线统计图,明确上升、水平、下降所表示的含义是解题的关键。
27.(1)74平方分米(2)2分米(3)6立方分米
【分析】
(1)因为鱼缸无盖,所以求它的5个面的总面积,根据长方体的表面积公式解答.
(2)根据长方体的体积公式:v=sh,用水的体积除以鱼缸的底面积
解析:(1)74平方分米(2)2分米(3)6立方分米
【分析】
(1)因为鱼缸无盖,所以求它的5个面的总面积,根据长方体的表面积公式解答.
(2)根据长方体的体积公式:v=sh,用水的体积除以鱼缸的底面积即可求出高.
(3)这些鹅卵石的体积等于鱼缸中上升的水的体积,根据长方体的体积公式进行解答.
【详解】
(1)4×5+(3×4+5×3)×2
=20+(12+15)×2
=20+54
=74(平方分米)
答:做这个鱼缸至少需要玻璃74平方分米.
(2)40升=40立方分米,
40÷(4×5)
=40÷20
=2(分米)
答:水深2分米.
③4×5×0.3
=6(立方分米)
答:这些鹅卵石的体积一共是6立方分米.
28.见详解
【分析】
①根据图表中的数据在统计图中描点,连线;
②观察统计图,龙门石窟的游览人数在7日最少,只有2万人,所以选择在7日去游览龙门石窟比较好。
【详解】
①“十一”期间龙门石窟和白马寺游览
解析:见详解
【分析】
①根据图表中的数据在统计图中描点,连线;
②观察统计图,龙门石窟的游览人数在7日最少,只有2万人,所以选择在7日去游览龙门石窟比较好。
【详解】
①“十一”期间龙门石窟和白马寺游览人数统计图
②假如明年“十一”要游览龙门石窟,我认为( )日比较好。
答:假如明年“十一”要游览龙门石窟,我认为7日比较好。
【点睛】
本题主要考查折线统计图的绘制和运用。
展开阅读全文