资源描述
北京第十五中学五年级下册数学期末试卷易错题(Word版含答案)
一、选择题
1.把一个棱长为5dm的正方体分割成完全一样的两个长方体,它们的表面积之和比原来增加( )dm2。
A.25 B.50 C.100 D.200
2.长方体棱长总和是72厘米,宽是5厘米,高是4厘米,它的长是( )厘米。
A.8 B.9 C.18 D.6
3.百位上是最小的质数,十位上是最小的奇数,个位上是最小的合数,这个数是( )。
A.214 B.114 C.212 D.112
4.a,b都是大于0的自然数,且a÷b=8,那么,a、b的最小公倍数是( )。
A.a B.b C.8
5.下列分数中,( )是最简分数。
A. B. C. D.
6.王叔叔原来的体重是90千克。坚持体育锻炼后,体重减轻了,王叔叔的体重减轻了( )千克。
A. B.24 C.68 D.
7.两人玩扑克牌比大小的游戏,每人每次出一张牌,各出三次赢两次者胜.小红的牌是“9”、“7”、“5”;小芳的牌是“8”、“6”、“3”.当小红出“5”时,小芳出( )才可能赢.
A.8 B.6 C.3 D.任意一张都行
8.如图,甲、乙两条彩带都被遮住了一部分,两条彩带的长度相比( )。
A.甲比乙长 B.乙比甲长 C.一样长 D.无法比较
二、填空题
9.(________) (________)
(________) (________)(________)
(________)(________)
10.和都是假分数,的分数单位是(________),如果B是一个质数,那么B是(________)。
11.美阳小区计划植树1034棵,至少再多种(________)棵,就是3的倍数,至少再多种(________)棵,就是5的倍数。
12.20的因数共有(________)个,20与30的最大公因数是(________),最小公倍数是(________)。
13.工人师傅准备用若干块长8分米,宽6分米的地砖铺一个大正方形,至少需要(______)块这样的方砖,铺好的大正方形的边长是(______)分米。
14.用同样大小的正方体摆一个立体图形,从上面看到的是,从左面看到的是,这个立体图形至少需要(________)个小正方体才能摆成。
15.于刚玩橡皮泥,先捏了一个正方体,然后又沿这个正方体的一个面的方向加长1厘米,得到一个长方体(如图)。这个长方体的表面积比原正方体的表面积增加12平方厘米,这个长方体的表面积是(______)平方厘米,体积是(______)立方厘米。
16.有14袋糖果,其中13袋质量相同,另有一袋质量不足,用天平至少称(________)次才能保证找出这袋糖果。
三、解答题
17.直接写出下面各题的结果。
18.计算下面各题(怎样算简便就怎样算)。
--
19.解方程。
20.张爷爷种菜。一块菜地的种了黄瓜,种了西红柿,剩下的种茄子,茄子占这块地的几分之几?
21.暑假期间,小林每6天游泳一次,小军每8天游泳一次。7月24日两人在游池相遇,八月几日他们再次相遇?
22.一堂美术课,学生活动用了小时,老师讲课用了小时,其余的时间学生独立做画,学生独立做画用了多少小时?
23.生产5个长3分米,宽0.8分米,高4分米的无盖包装袋共需要多少平方分米的包装纸,每个纸袋可以盛多少立方分米的物体?
24.一个封闭长方体玻璃容器,从里面量长10分米、宽6分米,高4分米,水深2分米(如图1)。现将容器如图2放置,图2中的水面高度是多少分米?
25.想一想,画一画。
①在表中先画出A(3,5)、B(6,0)、C(2,1)三个点,再用线把这三个点连接成一个三角形。
②将得到的三角形向右平移5格,画出这个新三角形A1B1C1。
③新三角形A1B1C1的三个顶点用数对表示,A1点是( ),B1点是( ),C1点是( )。
26.下图是汽车和火车的行程示意图,根据图中信息解答下面的问题。
(1)汽车比火车早到几分钟?
(2)汽车的速度是每分钟多少千米?
(3)火车中途停留了多长时间?
(4)除去停留时间,火车行完全程的平均速度是每分钟多少千米?
【参考答案】
一、选择题
1.B
解析:B
【分析】
由题意可知:将正方体切成2个完全相同的长方体,它们的表面积会比原来正方体表面积增加两个截面的面积,根据正方形面积=边长×边长,可算出一个正方形面积,然后乘2即可算出表面积增加了多少平方分米。
【详解】
5×5×2
=50(dm2)
故答案为:B。
【点睛】
本题主要考查正方体的切拼知识以及面积计算。
2.B
解析:B
【解析】
【详解】
略
3.A
解析:A
【分析】
最小的质数是2,最小的奇数是1,最小的合数是4,据此解答即可。
【详解】
百位上是最小的质数,十位上是最小的奇数,个位上是最小的合数,这个数是214。
故选:A
【点睛】
本题主要是考查整数的写法,解答此题关键是各位上的数字,要想知道各位上的数字,关键又是质数、合数的意义。
4.A
解析:A
【分析】
a÷b=8,则a和b是倍数关系。倍数关系的两个数的最小公倍数是这两个数中的较大数。
【详解】
根据题意,a和b是倍数关系,则a、b的最小公倍数是a。
故答案为:A
【点睛】
本题考查求两个数的最小公倍数,掌握成倍数关系的两个数的最小公倍数的特点是解题的关键。
5.B
解析:B
【分析】
根据最简分数的意义,分数的分子和分母只有公因数1的分数叫做最简分数。据此解答。
【详解】
A.分子和分母的最大公因数是3,化简后是,所以不是最简分数;
B.分子和分母的最大公因数是1,所以是最简分数;
C.分子和分母的最大公因数是17,化简后是,所以不是最简分数;
D.分子和分母的最大公因数是13,化简后是,所以不是最简分数;
故答案为:B。
【点睛】
此题考查的目的是理解掌握最简分数的意义。
6.B
解析:B
【分析】
用王叔叔的体重×,即:90×,就是王叔叔减轻的体重,即可解答。
【详解】
90×=24(千克)
故答案选:B
【点睛】
跟题考查分数乘法的应用,求一个数的几分之几是多少。
7.B
解析:B
【详解】
小芳第一次出3,另一人出9,小芳输,
第二次小芳出6,对方出5,小芳胜,
第三次小芳出8,对方出7小芳胜,
所以当小红出“5”时,小芳出6才可能赢.
故选B.
8.A
解析:A
【分析】
根据分数的意义,分母表示平均分的份数,分子表示有这样的几份,将甲补够同样的5份,乙补够同样的7份,画一画示意图即可。
【详解】
如图,甲比乙长。
故答案为:A
【点睛】
关键是理解分数的意义,可以画一画示意图。
二、填空题
9.2.06 5.4 0.78 780 2 900
【分析】
(1)高级单位变低级单位乘进率1000;
(2)低级单位变高级单位除以进率1000;
(3)低级单位变高级单位除以进率1000;
(4)因为1立方分米=1升是等量的,再由高级单位变低级单位乘进率1000;
(5)单名数变复名数,把2900ml拆分为2000ml和900ml,然后把2000ml变为L除以进率1000得2L,900ml不变,据此解答。
【详解】
由分析得,
35000 2.06
5.4 0.78780
2900
【点睛】
此题考查的是单位换算,熟记单位之间的进率是解题关键。
10.B
解析:
【分析】
一个分数的分数单位就是分母分之一,假分数是分子大于或等于分母的分数,质数是只有1和它本身两个因数的数,据此解答。
【详解】
和 都是假分数,的分数单位是,B是在6和10之间的数(包括6和10),因为B是质数,所以B只能是7。
【点睛】
此题考查了分数单位、真假分数的认识以及质数的认识,知识面较广,注意基础知识的积累。
11.1
【分析】
3的倍数的特征:各个数位之和能够被3整除,5的倍数的特征:个位上是0或5的数,据此解答即可。
【详解】
1+3+4=8,所以至少再多种1棵,就是3的倍数;
4+1=5,至少再多种1棵,就是5的倍数。
【点睛】
熟练掌握3和5的倍数的特征是解答本题的关键。
12.10 60
【分析】
根据找一个数的因数的方法,进行列举即可得知20的因数有几个;两个数公有质因数的连乘积就是这两个数的最大公因数,公有质因数和独有质因数的连乘积是这两个数的最小公倍数。
【详解】
20的因数有1、2、4、5、10、20;共6个;
20=2×2×5
30=2×3×5
最大公因数是:2×5=10
最小公倍数:2×2×3×5=60
【点睛】
解答此题应根据找一个数的因数的方法进行解答,注意找因数时要成对成对的找,防止遗漏;理解最大公因数和最小公倍数的含义是解题关键。
13.24
【分析】
要求至少用多少块这样的砖才能铺成一个正方形,先求拼成的正方形的边长最小是多少分米,即求8和6的最小公倍数,求出拼成的正方形的边长,进而求出长需要几块,宽需要几块,然后相乘求出用砖的总块数。
【详解】
8=2×2×2
6=2×3
8和6的最小公倍数是:2×2×2×3=24,即铺好的大正方形的边长是24分米
(24÷8)×(24÷6)
=3×4
=12(块)
【点睛】
解答此题的关键是明白,正方形的边长,是长方形地砖长和宽的最小公倍数,从而可以逐步求解。
14.6
【分析】
根据上面看到的图形可知,这个几何体有两排,第一排底层靠左有一个小正方形,第二排底层有三个小正方形;根据左面看到的图形可知,这个几何体有上下两层,第一层和第二层左边各有两个小正方形,据此画图即可。
【详解】
这个立体图形至少需要6个小正方体才能摆成。
【点睛】
本题考查了空间思维能力,从什么方位看,就假设自己站的什么位置。
15.36
【解析】
【详解】
略
解析:36
【解析】
【详解】
略
16.3
【分析】
找次品的最优策略:
(1)把待分物品分成3份;
(2)每份数量尽量平均,如果不能平均分的,也应该使多的一份与少的一份只相差1。
【详解】
只考虑最坏的情况,将14袋糖果分成(5、5、4
解析:3
【分析】
找次品的最优策略:
(1)把待分物品分成3份;
(2)每份数量尽量平均,如果不能平均分的,也应该使多的一份与少的一份只相差1。
【详解】
只考虑最坏的情况,将14袋糖果分成(5、5、4),称(5、5),不平衡,次品在5瓶中,将5分成(2、2、1),称(2、2),不平衡,次品在2瓶中,再称1次即可,共3次。
【点睛】
在生活中,常常出现这样的情况:在一些看似完全相同的物品中混着轻一点或者重一点的物品,需要我们想办法把它找出来,我们把这类问题叫做找次品。
三、解答题
17.1;;;
;;;
【详解】
略
解析:1;;;
;;;
【详解】
略
18.;;
;;0
【分析】
-(+),根据减法性质,原式化为:--,再根据加法交换律,原式化为:--,再进行计算;
-+,按照分数加减法的法则,进行计算;
--,根据减法性质,原式化为:-(+),再进行
解析:;;
;;0
【分析】
-(+),根据减法性质,原式化为:--,再根据加法交换律,原式化为:--,再进行计算;
-+,按照分数加减法的法则,进行计算;
--,根据减法性质,原式化为:-(+),再进行计算;
7-(-),先计算括号里的减法,再计算减法;
+-,按照分数加减法的运算法则,进行运算;
-(-)-,根据减法性质,原式化为:-+-,再根据加法交换律、减法性质,原式化为:(+)-(+),再进行计算。
【详解】
-(+)
=--
=--
=-
=-
=
-+
=-+
=+
=
--
=-(+)
=-1
=
7-(-)
=7-(-)
=7-
=
+-
=+-
=-
=
=
-(-)-
=-+-
=(+)-(+)
=1-1
=0
19.x=;x=;x=
【分析】
等式的性质:等式的左右两边加上或减去同一个数,等式左右两边仍然相等;等式的左右两边乘或除以同一个不为0的数,等式左右两边仍然相等,据此解方程即可。
【详解】
解:
解析:x=;x=;x=
【分析】
等式的性质:等式的左右两边加上或减去同一个数,等式左右两边仍然相等;等式的左右两边乘或除以同一个不为0的数,等式左右两边仍然相等,据此解方程即可。
【详解】
解:
解:
解:
20.【分析】
根据题意,把这块地看作单位“1”,平均分成6份,其中黄瓜占1份,西红柿占3份,求茄子占的分数,用6-1-3,即可求出茄子占几分之几,化成最简分数,即可。
【详解】
6-1-3=2(份)
解析:
【分析】
根据题意,把这块地看作单位“1”,平均分成6份,其中黄瓜占1份,西红柿占3份,求茄子占的分数,用6-1-3,即可求出茄子占几分之几,化成最简分数,即可。
【详解】
6-1-3=2(份)
茄子占:2÷6==
答:茄子占这块地的。
【点睛】
本题考查分数的意义,分数与除法的关系,以及约分。
21.8月17日
【分析】
小林每6天游泳一次,小军每8天游泳一次,6和8的最小公倍数就是他们相遇两次之间间隔的时间;从7月24日向后推算这个天数即可。
【详解】
6=2×3,8=2×2×2
6和8的最小
解析:8月17日
【分析】
小林每6天游泳一次,小军每8天游泳一次,6和8的最小公倍数就是他们相遇两次之间间隔的时间;从7月24日向后推算这个天数即可。
【详解】
6=2×3,8=2×2×2
6和8的最小公倍数是:2×2×2×3=24,
所以他们每相隔24天见一次面;
7月24日再过24天是8月17日。
答:8月17日他们又再次相遇。
【点睛】
本题关键是找出他们每两次相遇之间相隔的天数,进而根据开始的天数推算求解。
22.小时
【分析】
用一节课的总时间分别减去学生活动和老师讲课的时间即可求出学生独立做画的时间。
【详解】
40分钟=小时;
=
=(小时);
答:学生独立做画用了小时。
【点睛】
熟练掌握异分母分数
解析:小时
【分析】
用一节课的总时间分别减去学生活动和老师讲课的时间即可求出学生独立做画的时间。
【详解】
40分钟=小时;
=
=(小时);
答:学生独立做画用了小时。
【点睛】
熟练掌握异分母分数加减法的计算方法是解答本题的关键。
23.164平方分米;9.6立方分米
【分析】
因为是无盖的包装袋,只求出这个长方体5个面的面积和即可,根据长方体表面积公式:长×宽+(长×高+宽×高)×2,因为生产5个,再乘5,即可;求每个袋可以盛多少
解析:164平方分米;9.6立方分米
【分析】
因为是无盖的包装袋,只求出这个长方体5个面的面积和即可,根据长方体表面积公式:长×宽+(长×高+宽×高)×2,因为生产5个,再乘5,即可;求每个袋可以盛多少立方分米的物体,求这个长方体包装袋的体积,根据长方体体积公式:长×宽×高,代入数据,即可解答。
【详解】
[3×0.8+(3×4+0.8×4)×2]×5
=[2.4+(12+3.2)×2]×5
=[2.4+15.2×2]×5
=[2.4+30.4]×5
=32.8×5
=164(平方分米)
3×0.8×4
=2.4×4
=9.6(立方分米)
答:共需要164平方分米的包装纸,每个纸袋可以盛9.6立方米的物体。
【点睛】
本题考查长方体表面积公式、体积公式的应用;关键是无盖,就是5个面的面积之和。
24.3分米
【分析】
依据长方体体积公式V=abh,求出水的体积;将容器如图2放置后,底面长是10分米、宽是4分米,水的体积不变,依据高=体积÷底面积,求出水面高度。
【详解】
10×6×2÷(4×10
解析:3分米
【分析】
依据长方体体积公式V=abh,求出水的体积;将容器如图2放置后,底面长是10分米、宽是4分米,水的体积不变,依据高=体积÷底面积,求出水面高度。
【详解】
10×6×2÷(4×10)
=10×6×2÷40
=3(分米)
答:图2中的水面高度是3分米。
【点睛】
灵活运用长方体体积计算公式是解题的关键。
25.①②见详解;
③(8,5),(11,0),(7,1)
【分析】
①③用数对表示位置时,通常把竖排叫列,横排叫行。一般情况下,确定第几列时从左往右数,确定第几行时从前往后数。表示列的数在前,表示行的数
解析:①②见详解;
③(8,5),(11,0),(7,1)
【分析】
①③用数对表示位置时,通常把竖排叫列,横排叫行。一般情况下,确定第几列时从左往右数,确定第几行时从前往后数。表示列的数在前,表示行的数在后,中间用逗号“,”隔开,数对加上小括号。
②作平移后的图形步骤:找点-找出构成图形的关键点;定方向、距离-确定平移方向和平移距离;画线-过关键点沿平移方向画出平行线;定点-由平移的距离确定关键点平移后的对应点的位置;连点-连接对应点。
【详解】
①②
③新三角形A1B1C1的三个顶点用数对表示,A1点是(8,5),B1点是(11,0),C1点是(7,1)。
【点睛】
用有顺序的两个数表示出一个确定的位置就是数对。给出物体在平面图上的数对时,就可以确定物体所在的位置了。
26.(1)5分钟
(2)0.6千米
(3)10分钟
(4)0.75千米
【分析】
(1)观察统计图,用火车到达时间-汽车到达时间即可;
(2)求出汽车行驶时间,用路程÷时间=速度,列式解答;
(3)折线
解析:(1)5分钟
(2)0.6千米
(3)10分钟
(4)0.75千米
【分析】
(1)观察统计图,用火车到达时间-汽车到达时间即可;
(2)求出汽车行驶时间,用路程÷时间=速度,列式解答;
(3)折线水平不变表示停留,求出时间差即可;
(4)求出火车实际行驶时间,用路程÷时间=速度,列式解答。
【详解】
(1)8:25-8:20=5(分钟)
答:汽车比火车早到5分钟。
(2)8:20-7:55=25(分钟)
15÷25=0.6(千米)
答:汽车的速度是每分钟0.6千米。
(3)8:10-8:00=10(分钟)
答:火车中途停留了10分钟。
(4)8:25-7:55=30(分钟)
30-10=20(分钟)
15÷20=0.75(千米)
答:除去停留时间,火车行完全程的平均速度是每分钟0.75千米。
【点睛】
折线统计图不仅能看清数量的多少,还能通过折线的上升和下降表示数量的增减变化情况。复式折线统计图表示2个及以上的量的增减变化情况。
展开阅读全文