收藏 分销(赏)

2023年人教版七7年级下册数学期末测试(含答案).doc

上传人:天**** 文档编号:1727925 上传时间:2024-05-08 格式:DOC 页数:25 大小:616.54KB
下载 相关 举报
2023年人教版七7年级下册数学期末测试(含答案).doc_第1页
第1页 / 共25页
2023年人教版七7年级下册数学期末测试(含答案).doc_第2页
第2页 / 共25页
2023年人教版七7年级下册数学期末测试(含答案).doc_第3页
第3页 / 共25页
2023年人教版七7年级下册数学期末测试(含答案).doc_第4页
第4页 / 共25页
2023年人教版七7年级下册数学期末测试(含答案).doc_第5页
第5页 / 共25页
点击查看更多>>
资源描述

1、2023年人教版七7年级下册数学期末测试(含答案)一、选择题1如图,直线交的边于点,则与是( )A同位角B同旁内角C对顶角D内错角2下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )ABCD3在平面直角坐标系中,点在( )A第一象限B第二象限C第三象限D第四象限4下列命题中属假命题的是()A两直线平行,内错角相等Ba,b,c是直线,若ab,bc,则acCa,b,c是直线,若ab,bc,则acD无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示5如图,直线,点分别在直线上,P为两平行线间一点,那么等于( )ABCD6下列命题正确的是()A若ab,bc,则acB若ab,bc

2、,则acC49的平方根是7D负数没有立方根7如图:ABCD,OE平分BOC,OFOE,OPCD,ABO40,则下列结论:OF平分BOD;POEBOF;BOE70;POB2DOF,其中结论正确的序号是( )ABCD8如图,在平面直角坐标系中,一动点从原点出发,向右平移3个单位长度到达点,再向上平移6个单位长度到达点,再向左平移9个单位长度到达点,再向下平移12个单位长度到达点,再向右平移15个单位长度到达点按此规律进行下去,该动点到达的点的坐标是( )ABCD九、填空题9若,则=_十、填空题10若点P(a,b)关于y轴的对称点是P1 ,而点P1关于x轴的对称点是P ,若点P的坐标为(-3,4),

3、则a=_,b=_十一、填空题11如图,DB是的高,AE是角平分线,则_十二、填空题12如图,直线,若,_十三、填空题13将长方形纸带沿EF折叠(如图1)交BF于点G,再将四边形EDCF沿BF折叠,得到四边形,EF与交于点O(如图2),最后将四边形沿直线AE折叠(如图3),使得A、E、Q、H四点在同一条直线上,且恰好落在BF上若在折叠的过程中,且,则_十四、填空题14对于三个数a,b,c,用Ma,b,c表示这三个数的平均数,用mina,b,c表示这三个数中最小的数例如:M1,2,3,min1,2,31,如果M3,2x1,4x1min2,x3,5x,那么x_.十五、填空题15点P(2a,23a)是

4、第二象限内的一个点,且点P到两坐标轴的距离之和为12,则点P的坐标是_十六、填空题16如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(4,0),沿长方形BCDE的边作环绕运动物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是_十七、解答题17计算下列各题:(1) (2).十八、解答题18已知:,求下列各式的值:(1)的值;(2)的值十九、解答题19请补全推理依据:如图,已知:,求证:证明:(已知)( )( )又(已知)( )( )( )二十、解答题20如图,在平面直角坐标系中,点、在轴上,(

5、1)写出点、的坐标(2)如图,过点作交轴于点,求的大小(3)如图,在图中,作、分别平分、,求的度数二十一、解答题21解下列问题:(1)已知;求的值(2)已知的小数部分为的整数部分为,求的值二十二、解答题22如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长二十三、解答题23已知,ABCD,点E为射线FG上一点(1)如图1,若EAF25,EDG45,则AED= (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则AED、EAF、EDG之间满足怎样的关系,请说明你的结论;(3)如图3,当点E在FG延长线上时,DP平分

6、EDC,AED32,P30,求EKD的度数二十四、解答题24如图1,E点在BC上,AD,ABCD(1)直接写出ACB和BED的数量关系 ;(2)如图2,BG平分ABE,与CDE的邻补角EDF的平分线交于H点若E比H大60,求E;(3)保持(2)中所求的E不变,如图3,BM平分ABE的邻补角EBK,DN平分CDE,作BPDN,则PBM的度数是否改变?若不变,请求值;若改变,请说理由二十五、解答题25直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是BAP和ABM角的平分线,(1)点A、B在运动的过程中,ACB的大小是否发

7、生变化?若发生变化,请说明理由;若不发生变化,试求出ACB的大小.(2)如图2,将ABC沿直线AB折叠,若点C落在直线PQ上,则ABO_,如图3,将ABC沿直线AB折叠,若点C落在直线MN上,则ABO_(3)如图4,延长BA至G,已知BAO、OAG的角平分线与BOQ的角平分线及其反向延长线交于E、F,则EAF ;在AEF中,如果有一个角是另一个角的倍,求ABO的度数.【参考答案】一、选择题1A解析:A【分析】根据对顶角,同位角、内错角、同旁内角的概念解答即可【详解】解:直线AB交DCE的边CE于点F,1与2是直线AB、CD被直线CE所截得到的同位角故选:A【点睛】此题主要考查了对顶角,同位角、

8、内错角、同旁内角解题的关键是掌握对顶角,同位角、内错角、同旁内角的概念2B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析:B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B【点睛】本题考查平移的基本性质,平移

9、不改变图形的形状、大小和方向注意结合图形解题的思想3B【分析】根据各象限内点的坐标特征解答【详解】解:点P(-5,4)位于第二象限故选:B【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】根据平行线的性质对A、C进行判断;根据平行线的性质对B进行判断;根据无理数的定义和数轴上的点与实数一一对应对D进行判断【详解】解:A、两直线平行,内错角相等,所以A选项为真命题;B、a,b,c是直线,若ab,bc,则ac,所以B选项为假命题;C、a,b,c是直

10、线,若ab,bc,则ab,所以C选项为真命题;D、无限不循环小数是无理数,每一个无理数都可以用数轴上的一个点表示,所以D选项为真命题故选:B【点睛】此题考查了平行线的性质和无理数及数轴表示实数,难度一般,认真理解判断即可5A【分析】过点P作PEa则可得出PEab,结合“两直线平行,内错角相等”可得出2=AMP+BNP,再结合邻补角的即可得出结论【详解】解:过点P作PEa,如图所示PEa,ab,PEab,AMP=MPE,BNP=NPE,2=MPE+NPE=AMP+BNP1+AMP=180,3+BNP=180,1+2+3=180+180=360故选:A【点睛】本题考查了平行线的性质以及角的计算,解

11、题的关键是找出2=AMP+BNP本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键6B【解析】【分析】根据不等式的性质、平行线的判定、平方根和立方根依次判定各项后即可解答【详解】选项A,由ab,bc,则ac,可得选项A错误;选项B, 若ab,bc,则ac,正确;选项C,由49的平方根是7,可得选项C错误;选项D,由负数有立方根,可得选项D错误;故选B【点睛】本题考查了命题的知识,关键是根据不等式的性质、平行线的判定、平方根和立方根解答7A【分析】根据ABCD可得BOD=ABO=40,利用平角得到COB=140,再根据角平分线的定义得到BOE=70,则正确;

12、利用OPCD,ABCD,ABO=40,可得POB=50,BOF=20,FOD=20,进而可得OF平分BOD,则正确;由EOB=70,POB=50,POE=20,由BOF=POF-POB=20,进而可得POE=BOF,则正确;由可知POB=50,FOD=20,则不正确【详解】ABCD,BOD=ABO=40,COB=180-40=140,又OE平分BOC,BOE=COB=140=70,故正确;OPCD,POD=90,又ABCD,BPO=90,又ABO=40,POB=90-40=50,BOF=POF-POB=70-50=20,FOD=40-20=20,OF平分BOD,故正确;EOB=70,POB=9

13、0-40=50,POE=70-50=20,又BOF=POF-POB=70-50=20,POE=BOF,故正确;由可知POB=90-40=50,FOD=40-20=20,故POB2DOF,故不正确故结论正确的是,故选A【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答8C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),探究规律可得A2021(3033,-3030),从而求解【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A1

14、3(21,-18),探究规律可得A2021(3033,-3030),从而求解【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),可以看出,9=,15=,21=,得到规律:点A2n+1的横坐标为,其中的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,即,故A2021的横坐标为,A2021的纵坐标为,A2021(3033,-3030),故选:C【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型九、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行

15、填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键十、填空题10a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-解析:a=3 b=-4 【分析】先求得P1的坐标,再根据点P1关于x轴的对称点是P,则即可求得a与b的值【详解】由于P

16、1与P2关于x轴对称,P2的坐标为(-3,4),则P1的坐标为(-3,-4),点P(a,b)关于y轴对称的点是P1,则P点的坐标为(3,-4),则a=3,b=-4.【点睛】此题考查关于x轴、y轴对称的点的坐标,难度不大十一、填空题11【分析】由角平分线的定义可得,FAD=BAE=26,而AFD与FAD互余,与BFE是对顶角,故可求得BFE的度数【详解】AE是角平分线,BAE=26,FAD=B解析:【分析】由角平分线的定义可得,FAD=BAE=26,而AFD与FAD互余,与BFE是对顶角,故可求得BFE的度数【详解】AE是角平分线,BAE=26,FAD=BAE=26,DB是ABC的高,AFD=9

17、0FAD=9026=64,BFE=AFD=64.故答案为64.【点睛】本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.十二、填空题1260【分析】过点E作EFAB,由平行线的性质,先求出CEF=120,即可求出的度数【详解】解:过点E作EFAB,如图:,CEF=120,;故答解析:60【分析】过点E作EFAB,由平行线的性质,先求出CEF=120,即可求出的度数【详解】解:过点E作EFAB,如图:,CEF=120,;故答案为:60【点睛】本题考查了平行线的性质,解题的关键是掌握平行线的性质,正确的作出辅助线,从而进行解题十三、填空题1332【分析】

18、连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,A、E、Q、H在同一直线上解析:32【分析】连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,A、E、Q、H在同一直线上,=90=180-90-26=64由折叠的性质可知:=32故答案为:32.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.十四、填空题14或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x

19、3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1解析:或 【详解】【分析】根据题中的运算规则得到M3,2x1,4x1=1+2x,然后再根据min2,x3,5x的规则分情况讨论即可得.【详解】M3,2x1,4x1=2x+1,M3,2x1,4x1min2,x3,5x,有如下三种情况:2x+1=2,x=,此时min2,x3,5x= min2,=2,成立;2x+1=-x+3,x=,此时min2,x3,5x= min2,=2,不成立;2x+1=5x,x=,此时min2,x3,5x= min2,=,成立,x=或,故答案为或.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思

20、想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解十五、填空题15(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解【详解】解:点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,-2a解析:(-4,8)【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a,即可得解【详解】解:点P(2a,2-3a)是第二象限内的一个点,且P到两坐标轴的距离之和为12,-2a+2-3a=12,解得a=-2,2a=-4,2-3a=8,点P的坐标为(-4,8)故答案为:(-4,8)【点睛】本题考查了各象限内点的坐标的

21、符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,解析:【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,甲走过的路程为,相遇坐标为,第二次相遇又用时间为(秒),

22、甲又走过的路程为,相遇坐标为,第3次相遇时在点A处,则以后3的倍数次相遇都在点A处,第2021次相遇地点与第2次相遇地点的相同,第2021次相遇地点的坐标为故填:【点睛】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点十七、解答题17(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+解析:(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原

23、式;(2)原式30+0.5+十八、解答题18(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2)解析:(1)5;(2)13【分析】(1)将已知两式相减,再利用完全平方公式得到,可得结果;(2)根据完全平方公式可得=,代入计算即可【详解】解:(1),+得:,即,;(2),=13【点睛】本题主要考查了完全平方公式的变式应用,熟练应用完全平方公式的变式进行计算是解决本题的关键十九、解答题19同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内

24、错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:12180解析:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行线的判定定理以及性质定理证明即可【详解】证明:12180(已知),ADEF(同旁内角互补,两直线平行),3D(两直线平行,同位角相等),又3A(已知),DA(等量代换),ABCD(内错角相等,两直线平行),BC(两直线平行,内错角相等)故答案为:同旁内角互补,两直线平行;两直线平行,同位角相等;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【点睛】本题主要考查了平行线的判定与性质

25、,熟记平行线的判定定理与性质定理是解本题的关键二十、解答题20(1),;(2)90;(3)45【分析】(1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则;(3)根据角平分线的定义可得,过点作,然后根据平行解析:(1),;(2)90;(3)45【分析】(1)根据图形和平面直角坐标系,可直接得出答案; (2)根据两直线平行,内错角相等可得,则;(3)根据角平分线的定义可得,过点作,然后根据平行线的性质得出, 【详解】解:(1)依题意得:,;(2),;(3),分别平分,过点作,则,【点睛】本题考查了坐标与图形的性质,平行线的性质,熟记以上性质,并求出A,B,C

26、的坐标是解题的关键,(3)作出平行线是解题的关键二十一、解答题21(1);(2)【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的值,进而得出答案【详解】原式解析:(1);(2)【分析】(1)直接利用非负数的性质得出x,y的值,再利用立方根的定义求出答案;(2)直接估算无理数的取值范围得出a,b的值,进而得出答案【详解】原式【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键二十二、解答题22正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形的长

27、为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答【详解】解:设小长方形的宽为x厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,取正值,可得,答:正方形纸板的边长是18厘米【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式二十三、解答题23(1)70;(2),证明见解析;(3)122【分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,由角平分线解析:(1)70;(2),证明见解析;(3)122【

28、分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,由角平分线定义及得到,求出的值再通过三角形内角和求【详解】解:(1)过作,故答案为:;(2)理由如下:过作,;(3),设,则,又,平分,即,解得,【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键二十四、解答题24(1)ACB+BED=180;(2)100;(3)40【分析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得A解析:(1)ACB+BED=180;(2)100;(3)40【分

29、析】(1)如图1,延长DE交AB于点F,根据ABCD可得DFB=D,则DFB=A,可得ACDF,根据平行线的性质得ACB+CEF=180,由对顶角相等可得结论;(2)如图2,作EMCD,HNCD,根据ABCD,可得ABEMHNCD,根据平行线的性质得角之间的关系,再根据DEB比DHB大60,列出等式即可求DEB的度数;(3)如图3,过点E作ESCD,设直线DF和直线BP相交于点G,根据平行线的性质和角平分线定义可求PBM的度数【详解】解:(1)如图1,延长交于点,故答案为:;(2)如图2,作,平分,平分,设,比大,解得的度数为;(3)的度数不变,理由如下:如图3,过点作,设直线和直线相交于点,

30、平分,平分,由(2)可知:,【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质二十五、解答题25(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到解析:(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到PAB+ABM270,根据角平分线的定义得到BACPAB,ABCABM,于是得到结论;(2)由于将ABC沿直线AB折叠,若点C落在直线PQ上,得

31、到CABBAQ,由角平分线的定义得到PACCAB,即可得到结论;根据将ABC沿直线AB折叠,若点C落在直线MN上,得到ABCABN,由于BC平分ABM,得到ABCMBC,于是得到结论;(3)由BAO与BOQ的角平分线相交于E可得出E与ABO的关系,由AE、AF分别是BAO和OAG的角平分线可知EAF90,在AEF中,由一个角是另一个角的倍分情况进行分类讨论即可【详解】解:(1)ACB的大小不变,直线MN与直线PQ垂直相交于O,AOB90,OAB+OBA90,PAB+ABM270,AC、BC分别是BAP和ABM角的平分线,BACPAB,ABCABM, BAC+ABC(PAB+ABM)135,AC

32、B45;(2)将ABC沿直线AB折叠,若点C落在直线PQ上,CABBAQ,AC平分PAB,PACCAB,PACCABBAO60,AOB90,ABO30,将ABC沿直线AB折叠,若点C落在直线MN上,ABCABN,BC平分ABM,ABCMBC,MBCABCABN,ABO60,故答案为:30,60;(3)AE、AF分别是BAO与GAO的平分线,EAOBAO,FAOGAO,EEOQEAO(BOQBAO)ABO,AE、AF分别是BAO和OAG的角平分线,EAFEAO+FAO(BAO+GAO)90在AEF中,BAO与BOQ的角平分线相交于E,EAO= BAO,EOQ=BOQ, E=EOQ-EAO=(BOQ-BAO)=ABO,有一个角是另一个角的倍,故有:EAFF,E30,ABO60;FE,E36,ABO72;EAFE,E60,ABO120(舍去);EF,E54,ABO108(舍去);ABO为60或72【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服