1、人教七年级下册数学期末测试试卷及解析一、选择题1如图,下列各角中,与1是同位角的是( )A2B3C4D52下列现象中是平移的是( )A翻开书中的每一页纸张B飞碟的快速转动C将一张纸沿它的中线折叠D电梯的上下移动3点在第二象限内,则点在第_象限A一B二C三D四4下列命题是假命题的是( )A对顶角相等B两直线平行,同旁内角相等C过直线外一点有且只有一条直线与已知直线平行D同位角相等,两直线平行5为增强学生体质,感受中国的传统文化,学校将国家级非物质文化遗产“抖空竹”引入阳光特色大课间,小聪把它抽象成图2的数学问题:已知ABCD,EAB80,则E的度数是( )A30B40C60D706下列说法中正确
2、的是( )1的平方根是1;5是25的算术平方根;(4)2的平方根是4;(4)3的立方根是4;0.01是0.1的一个平方根ABCD7如图,小明从A处出发沿北偏东方向行走至B处,又沿北偏西方向行走至C处,则的度数是( )ABCD8已知点,将点作如下平移:第次将向右平移个单位,向上平移个单位得到;第次将向右平移个单位,向上平移个单位得到,第次将点向右平移个单位,向上平移个单位得到,则的坐标为( )ABCD九、填空题9已知是实数,且则的值是_.十、填空题10点A(2,4)关于x轴对称的点的坐标是_十一、填空题11如图,AD是ABC的角平分线,DFAB,垂足为F,DE=DG,ADG和AED的面积分别为5
3、0和38,则EDF的面积为_十二、填空题12如图,BD平分ABC,EDBC,1=25,则2=_,3=_十三、填空题13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_十四、填空题14如图,数轴上,两点表示的数分别为和4.1,则,两点之间表示整数的点共有_个十五、填空题15点是第四象限内一点,若点到两坐标轴的距离相等,则点的坐标为_十六、填空题16如图,在平面直角坐标系中,横坐标和纵坐标都为整数的点称为整点观察图中每个正方形(实线)四条边上的整点的个数,假如按图规律继续画正方形(实线),请你猜测由里向外
4、第15个正方形(实线)的四条边上的整点共有_个十七、解答题17计算:(1)(2)十八、解答题18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.十九、解答题19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180 CDEF( , )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 二十、解答题20如图,的三个顶点坐标分别为,(1)在平面直角坐标系中,画出;(2)将向下平移个单位长度,得到,并画出,并写出点的坐标二十一、解答题21任意无理数都是
5、由整数部分和小数部分构成的已知一个无理数a,它的整数部分是b,则它的小数部分可以表示为例如:,即,显然的整数部分是2,小数部分是根据上面的材料,解决下列问题:(1)若的整数部分是m,的整数部分是n,求的值(2)若的整数部分是,小数部分是y,求的值二十二、解答题22如图,在网格中,每个小正方形的边长均为1,正方形的顶点都在网格的格点上(1)求正方形的面积和边长;(2)建立适当的平面直角坐标系,写出正方形四个顶点的坐标二十三、解答题23已知,ABCD,点E为射线FG上一点(1)如图1,若EAF25,EDG45,则AED= (2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则AED、EA
6、F、EDG之间满足怎样的关系,请说明你的结论;(3)如图3,当点E在FG延长线上时,DP平分EDC,AED32,P30,求EKD的度数二十四、解答题24如图,以直角三角形的直角顶点为原点,以、所在直线为轴和轴建立平面直角坐标系,点,满足(1)点的坐标为_;点的坐标为_(2)如图1,已知坐标轴上有两动点、同时出发,点从点出发沿轴负方向以1个单位长度每秒的速度匀速移动,点从点出发以2个单位长度每秒的速度沿轴正方向移动,点到达点整个运动随之结束的中点的坐标是,设运动时间为问:是否存在这样的,使?若存在,请求出的值:若不存在,请说明理由(3)如图2,过作,作交于点,点是线段上一动点,连交于点,当点在线
7、段上运动的过程中,的值是否会发生变化?若不变,请求出它的值:若变化,请说明理由二十五、解答题25直线MN与直线PQ垂直相交于O,点A在射线OP上运动,点B 在射线OM上运动,A、B不与点O重合,如图1,已知AC、BC分别是BAP和ABM角的平分线,(1)点A、B在运动的过程中,ACB的大小是否发生变化?若发生变化,请说明理由;若不发生变化,试求出ACB的大小.(2)如图2,将ABC沿直线AB折叠,若点C落在直线PQ上,则ABO_,如图3,将ABC沿直线AB折叠,若点C落在直线MN上,则ABO_(3)如图4,延长BA至G,已知BAO、OAG的角平分线与BOQ的角平分线及其反向延长线交于E、F,则
8、EAF ;在AEF中,如果有一个角是另一个角的倍,求ABO的度数.【参考答案】一、选择题1D解析:D【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角【详解】解:由图可得,与1构成同位角的是5,故选:D【点睛】本题主要考查了同位角的概念,同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形2D【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现解析:D【分析】判断是否是平
9、移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化【详解】解:A:翻开书中的每一页纸张,这是翻折现象;B:飞碟的快速转动,这是旋转现象;C:将一张纸沿它的中线折叠,这是轴对称现象;D:电梯的上下移动这是平移现象故选:D【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选3D【分析】先根据第二象限内点的横坐标是负数,纵坐标是正数判断出m、n的正负情况,再根据各象限内点的坐标特征求解【详解】解:点P(m,n)在第二象限,m0,n0,-m0,m-n0,点Q(-m,m-n)在第四象限故选D【点睛】本题
10、考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键5A【分析】过点作,先根据平行线的性质可得,再根
11、据平行公理推论、平行线的性质可得,然后根据角的和差即可得【详解】解:如图,过点作,故选:A【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的性质是解题关键6B【分析】根据平方根,算术平方根,立方根的概念进行分析,从而作出判断【详解】解:1的平方根是1,故说法错误;5是25的算术平方根,故说法正确;(-4)2的平方根是4,故说法错误;(-4)3的立方根是-4,故说法正确;0.1是0.01的一个平方根,故说法错误;综上,正确,故选:B【点睛】本题考查了算术平方根,平方根,立方根的概念,理解相关定义,注意符号是解题关键7A【分析】根据平行线性质求出ABF,再和CBF相减即可得出答案【详解】解:由
12、题意可得:A60,CBF20,A+ABF180,ABF180A18060120,ABCABFCBF12020100,故选:A【点睛】本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键8C【分析】解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标【详解】解:可将点看成是两个方向的移动,从到的过程中,共向右平移了,共向上平移解析:C【分析】解:从到的过程中,找到共向右、向上平移的规律、,令,则共向右、向上平移了:、,即可得出的坐标【详解】解:可将点看成是两个方向的移动,从到的过程中,共向右平移
13、了,共向上平移了,令,则共向右平移了:,共向上平移了,又,故,故选:C【点睛】本题考查了点的坐标规律问题,解题的关键是找到向右及向上平移的规律,再利用规律进行解答九、填空题96【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛解析:6【解析】【分析】根据平方和算术平方根的非负性,求出x、y的值,代入计算得到答案【详解】解:由题意得,x20,y-30,解得,x2,y3,xy6,故答案为:6【点睛】本题考查的是非负数的性质,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键十、填空
14、题10(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛解析:(2,4)【分析】根据关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可直接得到答案【详解】点A(2,4)关于x轴对称的点的坐标是(2,4),故答案为(2,4)【点睛】此题主要考查了关于x轴对称的点的坐标,关键是掌握点的坐标的变化规律十一、填空题116【详解】如图,过点D作DHAC于点H,又AD是ABC的角平分线,DFAB,垂足为F,DF=DH,AFD=ADH=DHG=90,又AD=AD,DE=DG
15、,ADF解析:6【详解】如图,过点D作DHAC于点H,又AD是ABC的角平分线,DFAB,垂足为F,DF=DH,AFD=ADH=DHG=90,又AD=AD,DE=DG,ADFADH,DEFDGH,设SDEF=,则SAED+=SADG-,即38+=50-,解得:=6.EDF的面积为6.十二、填空题1250 【分析】由两直线平行,内错角、同位角分别相等可得出2=DBC,3=ABC=1+DBC,又由BD平分ABC得出DBC=1=25,利用等价替换法分别求出2和3即可解析:50 【分析】由两直线平行,内错角、同位角分别相等可得出2=DBC,3=ABC=1+DBC,又由BD平分ABC得出DBC=1=25
16、,利用等价替换法分别求出2和3即可【详解】解:BD平分ABC,DBC=1=25;又EDBC,2=DBC=25,3=ABC=1+DBC=50故答案为:25、50【点睛】本题考查了平行线的性质:两直线平行,内错角相等,同位角相等,解题过程中采用了等量代换的方法十三、填空题13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四
17、边形ABCD是平行四边形,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AEFEFC,GEFAEFEFC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键十四、填空题143【分析】根据无理数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数
18、的估算方法是解析:3【分析】根据无理数的估算、结合数轴求解即可【详解】解:在到4.1之间由2,3,4这三个整数故答案为:3.【点睛】本题考查了无理数的估算、实数与数轴,掌握无理数的估算方法是解题关键十五、填空题15【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可【详解】点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为解析:【分析】根据点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数列方程求出a的值,再求解即可【详解】点是第四象限内一点且到两坐标轴距离相等,点M的横坐标与纵坐标互为相反数解得, M
19、点坐标为(4,-4)故答案为(4,-4)【点睛】本题考查了点的坐标,理解点是第四象限内一点且到两坐标轴距离相等,则点M的横坐标与纵坐标互为相反数是解题的关键十六、填空题1660【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点【详解】解:第1个正方形,对于其中1条边,除去该边的一解析:60【分析】运用从特殊到一般的推理归纳的思想,利用正方形为中心对称图形,分析其一条边上的整点个数,进而推断整个正方形的四条边上的整点【详解】解:第1个正方形,对于其中1条边,除去该边的一个端点,这条边有1个整点根据正方形是中心对称图形,
20、则四条边共有41=4个整点,第2个正方形,对于其中1条边,除去该边的一个端点,这条边有2个整点根据正方形是中心对称图形,则四条边共有42=8个整点,第3个正方形,对于其中1条边,除去该边的一个端点,这条边共有3个整点根据正方形是中心对称图形,则四条边共有43=12个整点,第4个正方形,对于其中1条边,除去该边的一个端点,这条边共有4个整点根据正方形是中心对称图形,则四条边共有44=16个整点,第5个正方形,对于其中1条边,除去该边的一个端点,这条边共有5个整点根据正方形是中心对称图形,则四条边共有45=20个整点,.以此类推,第15个正方形,四条边上的整点共有415=60个故答案为:60【点睛
21、】本题主要考查了坐标与图形的性质,图形中的数字的变化规律准确找出每一个正方形(实线)四条边上的整点的个数与正方形序号的关系是解题的关键十七、解答题17(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键解析:(1);(2)【分析】直接利用立方根以及算术平方根的定义化简得出答案【详解】(1)(2)【点睛】此题主要考查了实数运算,正确化简各数是解题关键十八、解答题18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算
22、即可【详解】解:(1),解析:(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键十九、解答题19同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都
23、与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,( ABCD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =
24、EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键二十、解答题20(1)见解析;(2)见解析,A1(-2,-1)【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐解析:(1)见解析;(2)见解析,A1(-2,-1)【分析】(1)先根据坐标描出A、B、C三点,然后顺次
25、连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐标即可【详解】解:(1)如图:ABC即为所求;(2)如图:即为所求,点A1的坐标为(-2,-1)【点睛】本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键二十一、解答题21(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算【详解】解:(1),的整数部分是解析:(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数
26、部分,代入计算【详解】解:(1),的整数部分是3,即m=3,的整数部分是2,即n=2,=0;(2),的整数部分是10,即2x=10,x=5,的小数部分是=,即y=,=【点睛】本题考查了二次根式的整数和小数部分看懂题例并熟练运用是解决本题的关键二十二、解答题22(1)面积为29,边长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建立适当的坐标系后写出四个顶点的坐标解析:(1)面积为29,边长为;(2),图见解析【分析】(1)面积等于一个大正方形的面积减去四个直角三角形的面积,再利用算术平方根定义求得边长即可;(2)建
27、立适当的坐标系后写出四个顶点的坐标即可【详解】解:(1)正方形的面积,正方形边长为;(2)建立如图平面直角坐标系,则,【点睛】本题考查了算术平方根及坐标与图形的性质及割补法求面积,从图形中整理出直角三角形是进一步解题的关键二十三、解答题23(1)70;(2),证明见解析;(3)122【分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,由角平分线解析:(1)70;(2),证明见解析;(3)122【分析】(1)过作,根据平行线的性质得到,即可求得;(2)过过作,根据平行线的性质得到,即;(3)设,则,通过三角形内角和得到,
28、由角平分线定义及得到,求出的值再通过三角形内角和求【详解】解:(1)过作,故答案为:;(2)理由如下:过作,;(3),设,则,又,平分,即,解得,【点睛】本题主要考查了平行线的性质和判定,正确做出辅助线是解决问题的关键二十四、解答题24(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-t,OQ=2t,AQ=4-解析:(1),;(2)1;(3)不变,值为2【分析】(1)根据绝对值和算术平方根的非负性,求得a,b的值,再利用中点坐标公式即可得出答案; (2)先得出CP=t,OP=2-
29、t,OQ=2t,AQ=4-2t,再根据SODP=SODQ,列出关于t的方程,求得t的值即可; (3)过H点作AC的平行线,交x轴于P,先判定OGAC,再根据角的和差关系以及平行线的性质,得出PHO=GOF=1+2,OHC=OHP+PHC=GOF+4=1+2+4,最后代入进行计算即可【详解】解:(1)+|b-2|=0, a-2b=0,b-2=0, 解得a=4,b=2, A(0,4),C(2,0) (2)存在, 理由:如图1中,D(1,2), 由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,0t2时,点Q在线段AO上, 即 CP=t,OP=2-t,OQ=2t,AQ=4-
30、2t, SDOP=OPyD=(2-t)2=2-t,SDOQ=OQxD=2t1=t, SODP=SODQ, 2-t=t, t=1 (3)结论:的值不变,其值为2理由如下:如图2中,2+3=90, 又1=2,3=FCO, GOC+ACO=180, OGAC, 1=CAO, OEC=CAO+4=1+4, 如图,过H点作AC的平行线,交x轴于P,则4=PHC,PHOG, PHO=GOF=1+2, OHC=OHP+PHC=GOF+4=1+2+4, =2【点睛】本题主要考查三角形综合题、非负数的性质、三角形的面积、平行线的性质等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题二十五、解答题2
31、5(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到解析:(1)AEB的大小不会发生变化,ACB=45;(2)30,60;(3)60或72【分析】(1)由直线MN与直线PQ垂直相交于O,得到AOB90,根据三角形的外角的性质得到PAB+ABM270,根据角平分线的定义得到BACPAB,ABCABM,于是得到结论;(2)由于将ABC沿直线AB折叠,若点C落在直线PQ上,得到CABBAQ,由角平分线的定义得到PACCAB,即可得到结论;根据将ABC沿直线AB折叠,若点C落在直线M
32、N上,得到ABCABN,由于BC平分ABM,得到ABCMBC,于是得到结论;(3)由BAO与BOQ的角平分线相交于E可得出E与ABO的关系,由AE、AF分别是BAO和OAG的角平分线可知EAF90,在AEF中,由一个角是另一个角的倍分情况进行分类讨论即可【详解】解:(1)ACB的大小不变,直线MN与直线PQ垂直相交于O,AOB90,OAB+OBA90,PAB+ABM270,AC、BC分别是BAP和ABM角的平分线,BACPAB,ABCABM, BAC+ABC(PAB+ABM)135,ACB45;(2)将ABC沿直线AB折叠,若点C落在直线PQ上,CABBAQ,AC平分PAB,PACCAB,PA
33、CCABBAO60,AOB90,ABO30,将ABC沿直线AB折叠,若点C落在直线MN上,ABCABN,BC平分ABM,ABCMBC,MBCABCABN,ABO60,故答案为:30,60;(3)AE、AF分别是BAO与GAO的平分线,EAOBAO,FAOGAO,EEOQEAO(BOQBAO)ABO,AE、AF分别是BAO和OAG的角平分线,EAFEAO+FAO(BAO+GAO)90在AEF中,BAO与BOQ的角平分线相交于E,EAO= BAO,EOQ=BOQ, E=EOQ-EAO=(BOQ-BAO)=ABO,有一个角是另一个角的倍,故有:EAFF,E30,ABO60;FE,E36,ABO72;EAFE,E60,ABO120(舍去);EF,E54,ABO108(舍去);ABO为60或72【点睛】本题主要考查的是角平分线的性质以及三角形内角和定理的应用.解决这个问题的关键就是要能根据角平分线的性质将外角的度数与三角形的内角联系起来,然后再根据内角和定理进行求解.另外需要分类讨论的时候一定要注意分类讨论的思想