1、人教版中学七年级数学下册期末质量监测(含解析)一、选择题1下列事件中,不是必然事件的是( )A同旁内角互补B对顶角相等C等腰三角形是轴对称图形D垂线段最短2下列车标图案,可以看成由图形的平移得到的是( )ABCD3点在( )A第一象限B第二象限C第三象限D第四象限4下列语句中,是假命题的是()A有理数和无理数统称实数B在同一平面内,过一点有且只有一条直线与已知直线垂直C在同一平面内,垂直于同一条直线的两条直线互相平行D两个锐角的和是锐角5如图,ABCD,12,3130,则2等于()A30B25C35D406下列运算正确的是( )ABCD7如图1,则;如图2,则;如图3,则;如图4,直线,点O在
2、直线EF上,则以上结论正确的个数是( )A1个B2个C3个D4个8如图,在平面直角坐标系中,点点第次向上跳动个单位至点,紧接着第次向左跳动个单位至点,第次向上跳动个单位至点,第次向右跳动个单位至点,第次又向上跳动个单位至点,第次向左跳动个单位至点,照此规律,点第次跳动至点的坐标是( )ABCD九、填空题9的算术平方根是_十、填空题10点P(2,3)关于x轴的对称点的坐标是_十一、填空题11若点A(9a,3a)在第二、四象限的角平分线上,则A点的坐标为_十二、填空题12将一副直角三角板如图放置(其中,),点在上,则的度数是_十三、填空题13图,直线,直线l与直线AB,CD相交于点E、F,点P是射
3、线EA上的一个动点(不包括端点E),将沿PF折叠,使顶点E落在点Q处若PEF=75,2CFQ=PFC,则_十四、填空题14如图,按照程序图计算,当输入正整数时,输出的结果是,则输入的的值可能是_十五、填空题15在平面直角坐标系中,若点在第二象限,则的取值范围为_十六、填空题16如图,在平面直角坐标系中,轴,轴,点、在轴上,把一条长为2018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标是_十七、解答题17计算(1);(2)十八、解答题18求下列各式中的值:(1); (2)十九、解答题19如图所示,已知BDCD于D
4、,EFCD于F,A80,ABC100求证:12证明:BDCD,EFCD(已知)BDCEFC90(垂直的定义) (同位角相等,两直线平行)23 A80,ABC100(已知)A+ABC180AD/BC (两直线平行,内错角相等)12 二十、解答题20三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,(1)将向右平移4个单位长度得到,画出平移后的;(2)将向下平移5个单位长度得到,画出平移后的;(3)直接写出三角形的面积为_平方单位(直接写出结果)二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部写出来,而2,于是可用来表示
5、的小数部分请解答下列问题: (1)的整数部分是_,小数部分是_;(2)如果的小数部分为的整数部分为求的值二十二、解答题22已知在的正方形网格中,每个小正方形的边长为1(1)计算图中正方形的面积与边长(2)利用图中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数和二十三、解答题23已知直线,点P为直线、所确定的平面内的一点(1)如图1,直接写出、之间的数量关系 ;(2)如图2,写出、之间的数量关系,并证明;(3)如图3,点E在射线上,过点E作,作,点G在直线上,作的平分线交于点H,若,求的度数二十四、解答题24如图1,在平面直角坐标系中,且满足,过作轴于(1)求三
6、角形的面积(2)发过作交轴于,且分别平分,如图2,若,求的度数(3)在轴上是否存在点,使得三角形和三角形的面积相等?若存在,求出点坐标;若不存在;请说明理由二十五、解答题25已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数【参考答案】一、选择题1A解析:A【分析】必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件,据此判断即可解答【详解】解:A、不是必然事件,当前提条件是两直线平行时,才会得到同旁内角互补,符合题意;B、为必然事件,不合题
7、意;C、为必然事件,不合题意;D、为必然事件,不合题意故选A【点睛】本题考查了必然事件的定义,同时也考查了同旁内角,对顶角的性质,等腰三角形的性质,垂线段的性质必然事件是指在一定条件下,一定发生的事件,即发生的概率是1的事件2A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本选项解析:A【分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解【详解】解:A、可以由一个“基本图案”平移得到,故本选项符合题意;B、不是由一个“基本图案”平移得到,故本
8、选项不符合题意;C、可以由一个“基本图案”旋转得到,故本选项不符合题意;D、可以由一个“基本图案”旋转得到,故本选项不符合题意故选:A【点睛】本题主要考查了图形的平移和旋转,准确分析判断是解题的关键3C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限;故选C【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键4D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐
9、项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定理是解题的关键5B【分析】根据ABCD,3130,求得GAB3130,利用平行线的性质求得BAE180GAB18013050,由12 求出答案即可【详解】解:ABCD,3130,GAB3
10、130,BAE+GAB180,BAE180GAB18013050,12, 2BAE5025故选:B【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键6C【分析】利用立方根和算术平方根的定义,以及二次根式的化简得到结果,即可做出判断【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误;故选:C.【点睛】此题考查了立方根和算术平方根,以及二次根式的化简,熟练掌握立方根和算术平方根的定义,二次根式的化简方法是解本题的关键7B【分析】如图1所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,C+CE
11、F=180,则A+C+AEC=360,故错误;如图2所示,过点P作PE/AB,由平行线的性质即可得到A=APE=180,C=CPE,再由APC=APE=CPE,即可得到APC=A-C,即可判断;如图3所示,过点E作EF/AB,由平行线的性质即可得到A+AEF=180,1=CEF,再由AEF+CEF=AEC,即可判断 ;由平行线的性质即可得到,再由,即可判断【详解】解:如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,C+CEF=180,A+AEF+C+CEF=360,又AEF+CEF=AEC,A+C+AEC=360,故错误;如图所示,过点P作PE/AB,AB/CD
12、,AB/CD/PE,A=APE=180,C=CPE,又APC=APE=CPE,APC=A-C,故正确;如图所示,过点E作EF/AB,AB/CD,AB/CD/EF,A+AEF=180,1=CEF,又AEF+CEF=AEC,180-A+1=AEC,故错误;,故正确;故选B【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质8A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2解析:A【分析】设第n次跳动至点Pn,根据部分点An坐标的变化
13、找出变化规律P4n(n + 1,2n),Pn+1(n + 1,2n + 1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n +2),依此规律结合200 = 50 4,即可得出点P200的坐标【详解】解:设第n次跳动至点Pn,观察发现:P(1,0),P1(1,1),P2(-1,1),P3(-1,2),P4(2,2),P5(2,3),P6(-2,3),P7(-2,4),P8(3,4),P9(3,5),.,P4n+1(n + 1,2n +1),P4n+2(-n-1,2n+ 1),P4n+3(-n-1,2n+2),P4n(n + 1,2n),(n为自然数),200 = 50 4,P2
14、00(50+1 ,502),即(51,100)故选A【点睛】本题考查了规律型中点的坐标,解题的关键是准确找到点的坐标变化规律九、填空题9【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键解析:【分析】直接利用算术平方根的定义计算得出答案【详解】解:的算术平方根是:故答案为:【点睛】本题主要考查了算术平方根,正确掌握相关定义是解题关键十、填空题10(2,3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数【详解】点P(2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,对称点的坐标是(2,3
15、)故答案为解析:(2,3)【分析】两点关于x轴对称,那么横坐标不变,纵坐标互为相反数【详解】点P(2,3)关于x轴的对称,即横坐标不变,纵坐标互为相反数,对称点的坐标是(2,3)故答案为(2,3)【点睛】本题考查关于x轴对称的点的坐标的特点,可记住要点或画图得到十一、填空题11(3,3)【分析】根据第二、四象限角平分线上点的坐标特征得到9a+3a0,然后解方程即可【详解】点P在第二、四象限角平分线上,9a+3a0,a6,A点的坐标解析:(3,3)【分析】根据第二、四象限角平分线上点的坐标特征得到9a+3a0,然后解方程即可【详解】点P在第二、四象限角平分线上,9a+3a0,a6,A点的坐标为(
16、3,3)故答案为:(3,3)【点睛】本题考查了坐标与图形性质:解题的关键是利用坐标特征判断线段与坐标轴的位置关系;记住坐标轴和第一、三象限角平分线、第二、四象限角平分线上点的坐标特征十二、填空题12【分析】由题意得ACB=30,DEF=45,根据EDBC,可以得到DEC=ACB=30,即可求解.【详解】解:由图形可知:ACB=30,DEF=45EDBC,解析:【分析】由题意得ACB=30,DEF=45,根据EDBC,可以得到DEC=ACB=30,即可求解.【详解】解:由图形可知:ACB=30,DEF=45EDBC,DEC=ACB=30CEF=DEFDEC =4530=15,AEF=180-CE
17、F=165故答案为:165.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题13或【分析】分两种情形:当点Q在平行线AB,CD之间时当点Q在CD下方时,分别构建方程即可解决问题【详解】解:当点Q在平行线AB,CD之间时,如图1AB/CDPEF+解析:或【分析】分两种情形:当点Q在平行线AB,CD之间时当点Q在CD下方时,分别构建方程即可解决问题【详解】解:当点Q在平行线AB,CD之间时,如图1AB/CDPEF+CFE=180设PFQ=x,由折叠可知EFP=x,2CFQ=CFP,PFQ=CFQ=x,75+3x=180,x=35,EFP=35当点Q在CD下方
18、时,如图2设PFQ=x,由折叠可知EFP=x,2CFQ=CFP,PFC=x,75+x+x=180,解得x=63,EFP=63故答案为:或【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键十四、填空题14、【详解】解:y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)3=17;如果三次才输出结果:则x=(17-2)3=5;解析:、【详解】解:y=3x+2,如果直接输出结果,则3x+2=161,解得:x=53;如果两次才输出结果:则x=(53-2)3=17;如果三次才输出结果:则x=(17
19、-2)3=5;如果四次才输出结果:则x=(5-2)3=1;则满足条件的整数值是:53、17、5、1故答案为53、17、5、1点睛:此题的关键是要逆向思维它和一般的程序题正好是相反的十五、填空题15-1a3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可【详解】解:点P(a-3,a+1)在第二象限,解不等式得,a3,解不等式得,a解析:-1a3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可【详解】解:点P(a-3,a+1)在第二象限,解不等式得,a3,解不等式得,a-1,-1a3故答案为:-1a3【点睛】本题考查了各象限内点的坐标的符
20、号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)十六、填空题16(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到201820的余数为18,由此即可解决问题【详解】解:A(1,2),B(-1,2),D(-3,0),E(-3,-2),G解析:(1,0)【分析】先求出凸形ABCDEFGHP的周长为20,得到201820的余数为18,由此即可解决问题【详解】解:A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2),“凸”形ABCDEFGHP的周
21、长为20,201820的余数为18,细线另一端所在位置的点在P处,坐标为(1,0)故答案为:(1,0)【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型十七、解答题17(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【详解】解:(1)原式(2)原式【点睛】本题考查有理数解析:(1)3;(2)【分析】(1)根据有理数加减混合运算法则求解即可;(2)根据平方根与立方根的定义先化简,然后合并求解即可【详解】解:(1)原式(2)原式【点睛】本题考查有理数的加减混合运算,以及实数的混合运算等
22、,掌握基本的运算法则,注意运算顺序是解题关键十八、解答题18(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案【详解】解:(1),;(2),解析:(1);(2)【分析】(1)先移项,然后运用直接开平方法,即可求出的值;(2)方程两边同时除以8,然后计算立方根,即可得到答案【详解】解:(1),;(2),;【点睛】本题考查了直接开平方法、开立方根法求方程的解,解题的关键是熟练掌握直接开平方法、开立方根法进行解题十九、解答题19BDEF;两直线平行,同位角相等;同旁内角互补,两直线平行;13;等量代换【分析】根据垂直推出BD
23、EF,根据平行线的性质即可求出23,根据已知求出ABCA180,根据解析:BDEF;两直线平行,同位角相等;同旁内角互补,两直线平行;13;等量代换【分析】根据垂直推出BDEF,根据平行线的性质即可求出23,根据已知求出ABCA180,根据平行线的判定得出ADBC,再根据平行线的性质求出31,即可得到12【详解】证明:BDCD,EFCD(已知),BDCEFC90(垂直的定义),BDEF(同位角相等,两直线平行),23(两直线平行,同位角相等),A80,ABC100(已知),A+ABC180,ADBC(同旁内角互补,两直线平行),13(两直线平行,内错角相等),12(等量代换)故答案为:BDEF
24、;两直线平行,同位角相等;同旁内角互补,两直线平行;13;等量代换【点睛】本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键二十、解答题20(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应解析:(1)见解析;(2)见解析;(3)【分析】(1)把三角形的各顶点向右平移4个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(2)把三角形的各顶点向下平移5个单位长度,得到、的对应点、,再顺次连接即可得到三角形;(3)三
25、角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积【详解】解:(1)平移后的三角形如下图所示;(2)平移后的三角形如下图所示;(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,SABC【点睛】本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差二十一、解答题21(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的
26、值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故解析:(1)5;-5(2)0【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求出即可【详解】(1)56,的整数部分是5,小数部分是-5,故答案为:5;-5;(2)34,a-3,34,b3,-3+3-=0【点睛】本题考查了估算无理数的大小,能估算出、的范围是解此题的关键二十二、解答题22(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(
27、1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论【详解】解:(1)正方形的面积为44431=10则正方形的边长为;(2)如下图所示,正方形的面积为44422=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点正方形的边长为弧与数轴的左边交点为,右边交点为,实数和在数轴上如图所示【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和
28、利用数轴表示无理数是解题关键二十三、解答题23(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360解析:(1)A+C+APC=360;(2)见解析;(3)55【分析】(1)首先过点P作PQAB,则易得ABPQCD,然后由两直线平行,同旁内角互补,即可证得A+C+APC=360;(2)作PQAB,易得ABPQCD,根据两直线平行,内错角相等,即可证得APC=A+C;(3)由(2)知,APC=PAB-PCD,先证BEF=PQB=110、PEG=FEG,GEH=BEG,根据PEH=
29、PEG-GEH可得答案【详解】解:(1)A+C+APC=360如图1所示,过点P作PQAB,A+APQ=180,ABCD,PQCD,C+CPQ=180,A+APQ+C+CPQ=360,即A+C+APC=360;(2)APC=A+C,如图2,作PQAB,A=APQ,ABCD,PQCD,C=CPQ,APC=APQ-CPQ,APC=A-C;(3)由(2)知,APC=PAB-PCD,APC=30,PAB=140,PCD=110,ABCD,PQB=PCD=110,EFBC,BEF=PQB=110,EFBC,BEF=PQB=110,PEG=PEF,PEG=FEG,EH平分BEG,GEH=BEG,PEH=P
30、EG-GEH=FEG-BEG=BEF=55【点睛】此题考查了平行线的性质以及角平分线的定义此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用二十四、解答题24(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45;(3)P(0,1)或(0,3)【分析】(1)根据非负数的性质得到ab,ab40,解得a2,b2,则A(2,0),B(2,0),C(2,2),即可计算出三角形ABC的面积4;(2)由于CBy轴,BDAC,则CABABD,即34569
31、0,过E作EFAC,则BDACEF,然后利用角平分线的定义可得到341,562,所以AED129045;(3)先根据待定系数法确定直线AC的解析式为yx1,则G点坐标为(0,1),然后利用SPACSAPGSCPG进行计算【详解】解:(1)由题意知:ab,ab40,解得:a2,b2, A(2,0),B(2,0),C(2,2),SABC;(2)CBy轴,BDAC,CABABD,345690,过E作EFAC,BDAC,BDACEF,AE,DE分别平分CAB,ODB,341,562,AED129045;(3)存在理由如下:设P点坐标为(0,t),直线AC的解析式为ykxb,把A(2,0)、C(2,2)
32、代入得:,解得,直线AC的解析式为yx1,G点坐标为(0,1),SPACSAPGSCPG|t1|2|t1|24,解得t3或1,P点坐标为(0,3)或(0,1)【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等二十五、解答题25(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得出结论【详解】解:(1),;(2)由(1)知,;(3)当时,如图3,由(1)知,;当时,如图4,点,重合,由(1)知,即当以、为顶点的三角形是直角三角形时,度数为或【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键