1、人教版中学七7年级下册数学期末考试试卷(含解析)一、选择题1如图,直线AD,BE被直线BF和AC所截,则1的同位角和5的内错角分别是( )A2 和4B6和4C2 和6D6和32如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )ABCD3若点在第四象限内,则点的坐标可能是( )ABCD4下列两个命题:过一点有且只有一条直线和已知直线平行;垂直于同一条直线的两条直线互相平行,其中判断正确的是( )A都对B对错C都错D错对5已知,如图,点D是射线上一动点,连接,过点D作交直线于点E,若,则的度数为( )ABC或D或6若一个正数的两个平方根分别是2m+6和m18,则5m+7的立方根是(
2、)A9B3C2D97如图,小明从A处出发沿北偏东方向行走至B处,又沿北偏西方向行走至C处,则的度数是( )ABCD8如下图所示,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次运动到点,第3次运动到点,按照这样的运动规律,点第2021次运动到点( )ABCD九、填空题9的算术平方根为_;十、填空题10点关于y轴对称的点的坐标是_十一、填空题11如图,AD、AE分别是ABC的角平分线和高,B=60,C=70,则EAD=_十二、填空题12如图所示,把一个长方形纸片沿EF折叠后,点D,C分别落在D,C的位置若EFB72,则AED_十三、填空题13把一张长方形纸条按如图所示折
3、叠后,若,则_;十四、填空题14当时,我们把称为x为“和1负倒数”如:1的“和1负倒数”为;-3的“和1负倒数”为若,是的“和1负倒数”,是的“和1负倒数”依次类推,则_; _十五、填空题15已知点,轴,则点C的坐标是_ 十六、填空题16在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为_十七、解答题17计算下列各题:(1) (2).十八、解答题18求下列各式中的x(1)x281=0(2)(x1)3=8十九、解答题19完成下列证明:已知:如图,ABC中,AD平分BAC,E为线段BA延长线上一点,
4、G为BC边上一点,连接EG交AC于点H,且ADC+EGD180,过点D作DFAC交EG的延长线于点F求证:EF证明:AD平分BAC(已知),12( ),又ADC+EGD180(已知),EF (同旁内角互补,两直线平行)1E(两直线平行,同位角相等),23( )E (等量代换)又ACDF(已知),3F( )EF(等量代换)二十、解答题20已知在平面直角坐标系中有三点,请回答如下问题:(1)在平面直角坐标系内描出、,连接三边得到;(2)将三点向下平移2个单位长度,再向左平移1个单位,得到;画出,并写出、三点坐标;(3)求出的面积二十一、解答题21阅读下面的文字,解答问题:大家知道是无理数,而无理数
5、是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用1来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为,即23,所以的整数部分为2,小数部分为(2)请解答:(1)的整数部分是 ,小数部分是 ;(2)如果的小数部分为a,的整数部分为b,求a+b的值二十二、解答题22如图,阴影部分(正方形)的四个顶点在55的网格格点上(1)请求出图中阴影部分(正方形)的面积和边长 (2)若边长的整数部分为,小数部分为,求的值二十三、解答题23已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设
6、PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGHPNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由二十四、解答题24感知如图,求的度数小乐想到了以下方法,请帮忙完成推理过程解:(1)如图,过点P作(_),_(平行于同一条直线的两直线平行),_(两直线平行,同旁内角互补),即探究
7、如图,求的度数;应用(1)如图,在探究的条件下,的平分线和的平分线交于点G,则的度数是_(2)已知直线,点A,B在直线a上,点C,D在直线b上(点C在点D的左侧),连接,若平分平分,且所在的直线交于点E设,请直接写出的度数(用含的式子表示)二十五、解答题25已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数【参考答案】一、选择题1A解析:A【分析】同位角:两条直线a,b被第三条直线c所截(或说a,b相交c),在截线c的同旁,被截两直线a,b的同一侧的角,
8、我们把这样的两个角称为同位角;内错角:两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角,根据此定义即可得出答案【详解】解:直线AD,BE被直线BF和AC所截,1与2是同位角,5与4是内错角,故选A【点睛】本题考查的知识点是同位角和内错角的概念,解题关键是熟记内错角和同位角的定义2C【分析】根据平移的特点即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义解析:C【分析】根据平移的特点即可判断【详解】将图进行平移,得到的图形是故选C【点睛】此题主要考查平移的特点,解题的关键是熟知平移
9、的定义3B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,故选:B【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键4C【分析】根据平行公理及其推论判断即可【详解】解:过直线外一点有且只有一条直线和已知直线平行,故错误;在同一平面内,垂直于同一条直线的两条直线互相平行,故错误;故选:C【点睛】本题主要考查了命题与定理,平行公理及其推论,属于基础知识,要牢牢掌握5D【分析】分点D在线段AB上及点D在线段AB的延长线上两种情况考虑:当点D在线段AB上时,由DEB
10、C可得出ADE的度数,结合ADC=ADE+CDE可求出ADC的度数;当点D在线段AB的延长线上时,由DEBC可得出ADE的度数,结合ADC=ADE-CDE可求出ADC的度数综上,此题得解【详解】解:当点D在线段AB上时,如图1所示DEBC,ADE=ABC=84,ADC=ADE+CDE=84+20=104;当点D在线段AB的延长线上时,如图2所示DEBC,ADE=ABC=84,ADC=ADE-CDE=84-20=64综上所述:ADC=104或64故选:D【点睛】本题考查了平行线的性质,分点D在线段AB上及点D在线段AB的延长线上两种情况,求出ADC的度数是解题的关键6B【分析】根据立方根与平方根
11、的定义即可求出答案【详解】解:由题意可知:2m+6+m180,m4,5m+727,27的立方根是3,故选:B【点睛】考核知识点:平方根、立方根理解平方根、立方根的定义和性质是关键7A【分析】根据平行线性质求出ABF,再和CBF相减即可得出答案【详解】解:由题意可得:A60,CBF20,A+ABF180,ABF180A18060120,ABCABFCBF12020100,故选:A【点睛】本题考查了平行线的性质的应用,注意:两直线平行,同旁内角互补,也考查了方位角,熟练掌握平行线的性质是解决本题的关键8A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出
12、规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4解析:A【分析】令P点第n次运动到的点为Pn点(n为自然数)列出部分Pn点的坐标,根据点的坐标变化找出规律“P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)”,根据该规律即可得出结论【详解】解:令P点第n次运动到的点为Pn点(n为自然数)观察,发现规律:P0(0,0),P1(1,1),P2(2,0),P3(3,1),P4(4,0),P5(5,1),P4n(4n,0),P4n1(4n1,1),P4n2(4n2,0),P4n3(4n3,1)202150541,P第2021
13、次运动到点(2021,1)故选:A【点睛】本题考查了规律型中的点的坐标,属于基础题,难度适中,解决该题型题目时,根据点的变化罗列出部分点的坐标,根据坐标的变化找出变化规律是关键九、填空题9【分析】先求出的值,然后再化简求值即可【详解】解:,2的算术平方根是,的算术平方根是故答案为【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答解析:【分析】先求出的值,然后再化简求值即可【详解】解:,2的算术平方根是,的算术平方根是故答案为【点睛】本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关键,直接求解是本题的易错点十、填空题10【分析】根据点坐标关于
14、y轴对称的变换规律即可得【详解】点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点关于y轴对称的点的坐标是,故答案为:【点睛】本题考查了点坐标解析:【分析】根据点坐标关于y轴对称的变换规律即可得【详解】点坐标关于y轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点关于y轴对称的点的坐标是,故答案为:【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y轴对称的变换规律是解题关键十一、填空题11;【详解】解:由题意可知,B=60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题属于对角平分线和角度基本知识的变换求解解析:;【详解】解:由题意可知,B=
15、60,C=70,所以,所以,在三角形BAE中,所以EAD=5故答案为:5【点睛】本题属于对角平分线和角度基本知识的变换求解十二、填空题1236【分析】根据平行线的性质可知DEFEFB72,由折叠的性质求出DEF72,然后可求AED的值【详解】解:四边形ABCD为长方形,AD/BC,DEF解析:36【分析】根据平行线的性质可知DEFEFB72,由折叠的性质求出DEF72,然后可求AED的值【详解】解:四边形ABCD为长方形,AD/BC,DEFEFB72,又由折叠的性质可得DEFDEF72,AED180727236,故答案为:36【点睛】本题考查了平行线的性质,折叠的性质,熟练掌握折叠的性质是解答
16、本题的关键十三、填空题1355【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,解析:55【分析】直接根据补角的定义可知AOB+BOG+BOG=180,再由图形翻折变换的性质可知BOG=BOG,再由平行线的性质可得出结论【详解】解:AOB=70,AOB+BOG+BOG=180,BOG+BOG=180-70=110BOG由BOG翻折而成,BOG=BOG,BOG= =55ABCD,OGD=BOG=55故答案为:55【点睛】本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键十四、
17、填空题14【分析】根据“和1负倒数”的定义分别计算、,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答【详解】解:由“和1负倒数”定义和可得:,由此可得出从开解析:【分析】根据“和1负倒数”的定义分别计算、,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答【详解】解:由“和1负倒数”定义和可得:,由此可得出从开始每3个数为一周期循环,20213=6732,又= =1, =3,故答案为:;3【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键十五、填空题15(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵
18、坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,解析:(6,2)或(4,2)【分析】根据平行于x轴直线上的点的纵坐标相等求出点C的纵坐标,再分点C在点A的左边与右边两种情况讨论求出点C的横坐标,从而得解【详解】点A(1,2),ACx轴,点C的纵坐标为2,AC=5,点C在点A的左边时横坐标为1-5=-4,此时,点C的坐标为(-4,2),点C在点A的右边时横坐标为1+5=6,此时,点C的坐标为(6,2)综上所述,则点C的坐标是(6,2)或(-4,2)故答案为(6,2)或(-4,2)【点睛】本题考查了点的坐标,熟记平行于x轴
19、直线上的点的纵坐标相等是解题的关键,难点在于要分情况讨论十六、填空题16【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后解析:【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后利用202145051可判断点P2021的坐标与点P1的坐标相同【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为
20、(3,3),点P4的坐标为(2,-1),点P5的坐标为(2,0),而20214505+1,所以点P2021的坐标与点P1的坐标相同,为(2,0),故答案为:【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键十七、解答题17(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+解析:(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+十八、解答题18(1)x=9;(2)x=3【分析】(1)方
21、程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解【详解】解:(1)方程整理得:x2=81,开方得:x=9;(解析:(1)x=9;(2)x=3【分析】(1)方程整理后,利用平方根定义开方即可求出解;(2)利用立方根定义开立方即可求出解【详解】解:(1)方程整理得:x2=81,开方得:x=9;(2)方程整理得:(x-1)3=8,开立方得:x-1=2,解得:x=3【点睛】本题考查了平方根、立方根,熟练掌握各自的定义是解本题的关键十九、解答题19角平分线的定义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【分析】先根据角平分线的定义求得12,再根据平行线的判定证
22、得EFAD,运用平行线的性质和等量代换得到E3,解析:角平分线的定义;AD;两直线平行,同位角相等;3;两直线平行,内错角相等【分析】先根据角平分线的定义求得12,再根据平行线的判定证得EFAD,运用平行线的性质和等量代换得到E3,继而由ACDF证出3F,从而得到最后结论【详解】证明:AD平分BAC(已知),12(角平分线的定义),又ADC+EGD180(已知),EFAD(同旁内角互补,两直线平行)1E(两直线平行,同位角相等),23(两直线平行,同位角相等)E3(等量代换)又ACDF(已知),3F(两直线平行,内错角相等)EF(等量代换)故答案为:角平分线的定义;AD;两直线平行,同位角相等
23、;3;两直线平行,内错角相等【点睛】本题考查了平行线的性质和判定,能熟练地运用定理进行推理是解此题的关键二十、解答题20(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用解析:(1)见详解;(2)图形见详解,(-4,-2)、(4,2)、(0,3);(3)12【分析】(1)根据坐标在坐标图中描点连线即可;(2)按照平移方式描点连线并写出坐标点;(3)根据坐标点利用割补法求面积即可【详解】解:(1)如图:(2)平移后如图:平移后坐标分别为:(-4,-2)、(4,
24、2)、(0,3);(3)的面积: 【点睛】此题考查坐标系中坐标的平移和坐标图形的面积,难度一般,掌握平移的性质是关键二十一、解答题21(1)3, 3;(2)1【分析】(1)根据解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可【详解】(1), 的整数部分是3,小数部分是3,解析:(1)3, 3;(2)1【分析】(1)根据解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可【详解】(1), 的整数部分是3,小数部分是3, 故答案为:3,3;(2)23,a2, 34,b3,a+b2+31【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.二十二
25、、解答题22(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案解析:(1)S=13,边长为 ;(2)6【详解】分析:(1)、利用正方形的面积减去四个直角三角形的面积得出阴影部分的面积,从而得出正方形的边长;(2)、根据无理数的估算得出a和b的值,然后得出答案详解:解:(1)S=25-12=13, 边长为 ,(2)a=3,b= -3 原式=9+-3-=6点睛:本题主要考查的就是无理数的估算,属于中等难度的题型解决这个问题的关键就是根据正方形的面积得出边长二十
26、三、解答题23(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于解析:(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】
27、本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键二十四、解答题24感知见解析;探究70;应用(1)35;(2)或【分析】感知过点P作PMAB,根据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;解析:感知见解析;探究70;应用(1)35;(2)或【分析】感知过点P作PMAB,根据平行线的性质得到1=AEP,2+PFD=180,求出2的度数,结合1可得结果;探究过点P作PMAB,根据ABCD,PMCD,进而根据平行线的性质即可求EPF的度数;应用(1)如图所示,在探究的条件下,根据PEA的平分线和PFC的平分线交于点G,
28、可得G的度数;(2)画出图形,分点A在点B左侧和点A在点B右侧,两种情况,分别求解【详解】解:感知如图,过点P作PMAB,1=AEP=40(两直线平行,内错角相等)ABCD,PMCD(平行于同一条直线的两直线平行),2+PFD=180(两直线平行,同旁内角互补),PFD=130(已知),2=180-130=50,1+2=40+50=90,即EPF=90;探究如图,过点P作PMAB,MPE=AEP=50,ABCD,PMCD,PFC=MPF=120,EPF=MPF-MPE=120-50=70;应用(1)如图所示,EG是PEA的平分线,FG是PFC的平分线,AEG=AEP=25,GFC=PFC=60
29、,过点G作GMAB,MGE=AEG=25(两直线平行,内错角相等)ABCD(已知),GMCD(平行于同一条直线的两直线平行),GFC=MGF=60(两直线平行,内错角相等)G=MGF-MGE=60-25=35故答案为:35(2)当点A在点B左侧时,如图,故点E作EFAB,则EFCD,ABE=BEF,CDE=DEF,平分平分,ABE=BEF=,CDE=DEF=,BED=BEF+DEF=;当点A在点B右侧时,如图,故点E作EFAB,则EFCD,DEF=CDE,ABG=BEF,平分平分,DEF=CDE=,ABG=BEF=,BED=DEF-BEF=;综上:BED的度数为或【点睛】本题考查了平行线的判定
30、与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质二十五、解答题25(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得解析:(1)60;(2)15;(3)30或15【分析】(1)利用两直线平行,同旁内角互补,得出,即可得出结论;(2)先利用三角形的内角和定理求出,即可得出结论;(3)分和两种情况求解即可得出结论【详解】解:(1),;(2)由(1)知,;(3)当时,如图3,由(1)知,;当时,如图4,点,重合,由(1)知,即当以、为顶点的三角形是直角三角形时,度数为或【点睛】此题是三角形综合题,主要考查了平行线的性质,三角形的内角和定理,角的和差的计算,求出是解本题的关键