资源描述
人教版部编版八年级下册数学期末试卷达标检测卷(Word版含解析)
一、选择题
1.若二次根式有意义,则的取值范围是( )
A. B. C. D.
2.下列各组数不能作为直角三角形的三边长的是( )
A.8,15,17 B.7,12,15 C.5,12,13 D.7,24,25
3.如图,在四边形ABCD中,下列条件不能判定四边形ABCD是平行四边形的是( )
A.AB∥DC, AD∥BC B.AB=DC,AD=BC
C.AD∥BC,AB=DC D.AB∥DC,AB=DC
4.某校九年级(1)班全体学生2021年初中学业水平体育考试成绩统计如下表:
成绩(分)
35
39
42
44
45
48
50
人数(人)
3
6
7
7
10
8
9
根据上表中的信息判断,下列结论中错误的是( )A.该班一共有50名学生
B.该班学生这次考试成绩的众数是45分
C.该班学生这次考试成绩的中位数是45分
D.该班学生这次考试成绩的平均数是45分
5.下列是勾股数的有( )
① 3、4、5;② 5、12 、13;③ 9、40 、41;④ 13、14、15;⑤;⑥ 11 、60 、61
A.6组 B.5组 C.4组 D.3组
6.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=( )
A.35° B.45° C.50° D.55°
7.如图,在四边形中,、分别是、的中点,若,,,则的面积为( )
A.60 B.48 C.30 D.15
8.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是( )
A.k≤2 B.k≥ C.0<k< D.≤k≤2
二、填空题
9.若二次根式有意义,且关于x的分式方程+2=有正数解,则符合条件的整数m的和是 _____.
10.如图,菱形的对角线与相交于点,若,,则菱形的面积为______.
11.在中,,,,斜边的长为__________.
12.如图,由边长为1的小正方形组成的网格中,△ABC的三个顶点A、B、C都在网格格点的位置上,则△ABC的中线BD的长为_______.
13.若正比例函数y=kx的图象经过点(2,﹣4),则k的值为_____.
14.如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.
15.在平面直角坐标系中,Q是直线上的一个动点,将Q绕点顺时针旋转,得到点连接,则的最小值为__________.
16.如图,在三角形纸片ABC中,∠ACB=90°,BC=6,AB=10,如果在AC边上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,那么CE的长为________.
三、解答题
17.计算:
(1);
(2).
18.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m
(1)求此时梯子的顶端A距地面的高度AC;
(2)如果梯子的顶端A下滑了0.9m,那么梯子的底端B在水平方向上向右滑动了多远?
19.如图,4×10长方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1,点A,B,E,F都在格点上,按下列要求作图,使得所画图形的顶点均在格点上.
(1)在图中画出以AB为边的正方形ABCD;
(2)在图中画出以EF为边的等腰三角形EFG,且△EFG的周长为;
(3)在(1)(2)的条件下,连接CG,则线段CG的长为 .
20.如图,∠A=∠B=40°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.
(1)求证:APMBPN;
(2)当α等于多少度时,以A、M、B、N为顶点的四边形是菱形?
21.求的值.
解:设x=,两边平方得:,即,x2=10
∴x=.
∵>0,∴=.
请利用上述方法,求的值.
22.学校准备印制一批纪念册.纪念册每册需要张大小的纸,其中张为彩页,张为黑白页.印刷费(元)与印数(千册)间的关系见下表:
印数(单位:千册)
彩色(单位:元张)
黑白(单位:元张)
(1)若,求出与之间的函数解析式;
(2)若,求出与之间的函数解析式;
(3)若学校印制这批纪念册的印刷费为元则印刷的纪念册有多少册?
23.如图,在▱ABCD中,连接BD,,且,E为线段BC上一点,连接AE交BD于F.
(1)如图1,若,BE=1,求AE的长度;
(2)如图2,过D作DH⊥AE于H,过H作HG⊥AD交AD于G,交BD于M,过M作MN∥AD交AE于N,连接BN,证明:;
(3)如图3,点E在线段BC上运动时,过D作DH⊥AE于H,延长DH至Q,使得,M为AD的中点,连接QM,若,当QM取最大值时,请直接写出△ADH的面积.
24.如图,一次函数与坐标轴交于两点,将线段以点为中心逆时针旋转一定角度,点的对应点落在第二象限的点处,且的面积为.
(1)求点的坐标及直线的表达式;
(2)点在直线上第二象限内一点,在中有一个内角是,求点的坐标;
(3)过原点的直线,与直线交于点,与直线交于点,在三点中,当其中一点是另外两点所连线段的中点时,求的面积.
25.在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.
(1)求m,n的值;
(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;
②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;
(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.
26.如图,在正方形中,点、是正方形内两点,,,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接,且
①求证:与互相平分;
②求证:;
(2)在图2中,当,其它条件不变时,是否成立?若成立,请证明:若不成立,请说明理由.
(3)在图3中,当,,时,求之长.
【参考答案】
一、选择题
1.B
解析:B
【分析】
根据二次根式有意义的条件列式求解即可.
【详解】
解:∵二次根式有意义
∴x﹣3≥0,即:x≥3.
故选:B.
【点睛】
本题主要考查了二次根式有意义的条件,二次根式有意义的条件是被开方数大于等于零.
2.B
解析:B
【分析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案.
【详解】
解:A、82+152=172,符合勾股定理的逆定理,故此选项不符合题意;
B、72+122≠152,不符合勾股定理的逆定理,故此选项符合题意;
C、52+122=132,符合勾股定理的逆定理,故此选项不符合题意;
D、72+242=252,符合勾股定理的逆定理,故此选项不符合题意.
故选:B.
【点睛】
本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.
3.C
解析:C
【解析】
【分析】
注意题目所问是“不能”,根据平行四边形的判定条件可解出此题.
【详解】
解:平行四边形的判定条件:
A、根据两组对边分别平行的四边形是平行四边形可判定,不符合题意;
B、根据两组对边分别相等的四边形是平行四边形可判定,不符合题意;
C、可能是等腰梯形,不能判定,符合题意;
D、根据一组对边平行且相等的四边形是平行四边形可判定,不符合题意;
故选:C.
【点睛】
本题主要考查平行四边形的性质,掌握平行四边形的基本性质是解答本题的关键
4.D
解析:D
【解析】
【分析】
结合表格根据中位数、众数、平均数的概念求解即可.
【详解】
解:A、该班的人数为(人),选项正确,不符合题意;
B、得45分的人最多,故众数为45分,选项正确,不符合题意;
C、将分数按照从小到大排列起来,第25名和第26名同学的成绩的平均数就是中位数,故中位数为:分,选项正确,不符合题意;
D、班学生这次考试成绩的平均数为
(分),选项错误,符合题意;
故选D
【点睛】
本题考查了中位数、众数、平均数各知识点,熟练掌握概念是解题的关键.
5.C
解析:C
【分析】
根据勾股定理的逆定理分别进行计算,然后判断即可.
【详解】
解:①,故3、4、5是勾股数;
②,故5、12 、13是勾股数;
③ ,故9、40 、41是勾股数;
④,故13、14、15不是勾股数;
⑤,但不是整数,故不是勾股数;
⑥ ,故11 、60 、61是勾股数
是勾股数的共4组
故选:C
【点睛】
本题考查了了勾股数,关键是找出数据之间的关系,掌握勾股定理逆定理.
6.D
解析:D
【解析】
【分析】
延长PF交AB的延长线于点G.根据已知可得∠B,∠BEF,∠BFE的度数,再根据余角的性质可得到∠EPF的度数,从而不难求得∠FPC的度数.
【详解】
解:延长PF交AB的延长线于点G.
在△BGF与△CPF中,
∴△BGF≌△CPF(ASA),
∴GF=PF,
∴F为PG中点.
又∵由题可知,∠BEP=90°,
∴(直角三角形斜边上的中线等于斜边的一半),
∵(中点定义),
∴EF=PF,
∴∠FEP=∠EPF,
∵∠BEP=∠EPC=90°,
∴∠BEP﹣∠FEP=∠EPC﹣∠EPF,即∠BEF=∠FPC,
∵四边形ABCD为菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F分别为AB,BC的中点,
∴BE=BF,
易证FE=FG,
∴∠FGE=∠FEG=55°,
∵AG∥CD,
∴∠FPC=∠EGF=55°
故选D.
【点睛】
此题主要考查了菱形的性质的理解及运用,灵活应用菱形的性质是解决问题的关键.
7.C
解析:C
【解析】
【分析】
连接BD,根据三角形中位线定理求出BD,根据勾股定理的逆定理得到∠BDC=90°,然后求得面积即可.
【详解】
解:连接BD,
∵E、F分别是AB、AD中点,
∴BD=2EF=12,
∵CD2+BD2=25+144=169,BC2=169,
∴CD2+BD2=BC2,
∴∠BDC=90°,
∴S△DBC=BD•CD=×12×5=30,
故选:C.
【点睛】
本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
8.D
解析:D
【分析】
如图,可知当直线在过点和点两点之间的时候满足条件,把、两点分别代入可求得的最小值和最大值,可求得答案.
【详解】
解:
直线与正方形有公共点,
直线在过点和点两直线之间之间,
如图,可知,,
当直线过点时,代入可得,解得,
当直线过点时,代入可得,解得,
的取值范围为:,
故选.
【点睛】
本题主要考查一次函数图象点的坐标,由条件得出直线在过和两点间的直线是解题的关键,注意数形结合思想的应用.
二、填空题
9.-4
【解析】
【分析】
根据二次根式有意义,可得m≤2,解出关于x的分式方程 +2=的解为x=,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.
【详解】
解:+2=,
去分母得,﹣m+2(x﹣1)=3,
解得,x=,
∵关于x的分式方程+2=有正数解,
∴>0,
∴m>﹣5,
又∵x=1是增根,当x=1时,=1,即m=﹣3,
∴m≠﹣3,
∵有意义,
∴2﹣m≥0,
∴m≤2,
因此﹣5<m≤2且m≠﹣3,
∵m为整数,
∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,
故答案为:﹣4.
【点睛】
考查二次根式的意义、分式方程的解法,以及分式方程产生增根的条件等知识,理解正数解,整数m的意义是正确解答的关键.
10.B
解析:24
【解析】
【分析】
首先求出对角线BD的长,根据菱形面积等于两条对角线乘积的一半计算即可.
【详解】
∵四边形ABCD为菱形,
∴AC⊥BD,,
在Rt△ABO中,
,
∴BD=8,
∴菱形ABCD的面积为:,
故填:24.
【点睛】
此题主要考查菱形的对角线的性质和菱形的面积计算,熟练掌握菱形面积等于两条对角线乘积的一半是解题关键.
11.B
解析:
【解析】
【分析】
由,得到 利用勾股定理可得答案.
【详解】
解:设BC
,,
,
(舍去),
故答案为:
【点睛】
本题考查的是含角的直角三角形的性质与勾股定理的应用,掌握相关知识点是解题的关键.
12.A
解析:
【分析】
首先根据勾股定理求得AB,BC,AC的长度,然后由勾股定理的逆定理判定△ABC是直角三角形,则根据直角三角形斜边上中线的性质求解即可.
【详解】
解:如图,AB2=12+22=5,BC2=22+42=20,AC2=42+32=25.
∴AB2+BC2=AC2.
∴△ABC是直角三角形,且∠ABC=90°.
∵BD是斜边AC上的中线,
∴BD=AC==.
故答案是:.
【点睛】
本题考查了勾股定理及其逆定理,直角三角形的斜边的中线的性质,用勾股定理的逆定理判定直角三角形是解题的关键.
13.-2
【分析】
因为正比例函数y=kx的图象经过点(2,﹣4),代入解析式,解之即可求得k.
【详解】
解:∵正比例函数y=kx的图象经过点(2,﹣4),
∴﹣4=2k,
解得:k=﹣2.
故答案为:﹣2.
【点睛】
此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.
14.A
解析:
【详解】
解:设AC与BD相交于点O,连接OP,过D作DM⊥AC于M,
∵四边形ABCD是矩形,
∴,AC=BD,∠ADC=90°.
∴OA=OD.
∵AB=3,AD=4,∴由勾股定理得:AC= .
∵ ,∴DM=.
∵,
∴ .
∴PE+PF=DM=.故选B.
15.【分析】
利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题.
【详解】
解:作轴于点,轴于,
,
,
,
在和△中,
,
△,
解析:
【分析】
利用等腰直角三角形构造全等三角形,求出旋转后的坐标,进而可得点所在直线的函数关系式,然后根据勾股定理求解即可解决问题.
【详解】
解:作轴于点,轴于,
,
,
,
在和△中,
,
△,
,,
设,
,,
,
,,
设点,,
则,
整理,得:,
则点,在直线上,
设直线与x轴,y轴的交点分别为E、F,
如图,当时,取得最小值,
令,则,
解得,
∴,
令,则,
∴,
在中,,
当时,则,
∴,
的最小值为,
故答案为:.
【点睛】
本题考查的是一次函数图象上点的坐标特征,一次函数的性质,三角形全等,坐标与图形的变换-旋转,勾股定理,表示出点的坐标以及点所在直线的函数关系式是解题的关键.
16.3
【分析】
利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB,DE=AE,根据线段的和差关系可得CD的长,设CE=x,则DE=8-x,利用勾股定理列方程求出x的值即可得答案.
【详解】
∵
解析:3
【分析】
利用勾股定理可求出AC=8,根据折叠的性质可得BD=AB,DE=AE,根据线段的和差关系可得CD的长,设CE=x,则DE=8-x,利用勾股定理列方程求出x的值即可得答案.
【详解】
∵∠ACB=90°,BC=6,AB=10,
∴AC===8,
∵BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,
∴BD=AB=10,DE=AE,∠DCE=90°,
∴CD=BD-BC=10-6=4,
设CE=x,则DE=AE=AC-CE=8-x,
∴在Rt△DCE中,DE2=CE2+CD2,即(8-x)2=x2+42,
解得:x=3,
∴CE=3,
故答案为:3
【点睛】
本题考查了翻折变换的性质及勾股定理的应用,根据翻折前后的两个图形能够重合得到相等的线段并转化到一个直角三角形中,利用勾股定理列出方程是解此类题目的关键.
三、解答题
17.(1);(2)4
【分析】
(1)先利用二次根式的性质化简和去绝对值,然后合并同类二次根式即可;
(2)利用二次根式的性质化简,完全平方公式和零指数幂的计算法则化简,最后合并同类二次根式即可.
【详
解析:(1);(2)4
【分析】
(1)先利用二次根式的性质化简和去绝对值,然后合并同类二次根式即可;
(2)利用二次根式的性质化简,完全平方公式和零指数幂的计算法则化简,最后合并同类二次根式即可.
【详解】
解:(1)
;
(2)
.
【点睛】
本题主要考查了利用二次根式的性质化简,合并同类二次根式,完全平方公式,零指数幂,解题的关键在于能够熟练掌握相关计算法则
18.(1)2.4米;(2)1.3m
【分析】
(1)直接利用勾股定理求出AC的长,进而得出答案;
(2)直接利用勾股定理得出B′C,进而得出答案.
【详解】
解:(1)∵∠C=90°,AB=2.5,BC
解析:(1)2.4米;(2)1.3m
【分析】
(1)直接利用勾股定理求出AC的长,进而得出答案;
(2)直接利用勾股定理得出B′C,进而得出答案.
【详解】
解:(1)∵∠C=90°,AB=2.5,BC=0.7,
∴AC==(米),
答:此时梯顶A距地面的高度AC是2.4米;
(2)∵梯子的顶端A下滑了0.9米至点A′,
∴A′C=AC−A′A=2.4−0.9=1.5(m),
在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,
∴1.52+B′C2=2.52,
∴B′C=2(m),
∴BB′=CB′−BC=2−0.7=1.3(m),
答:梯子的底端B在水平方向滑动了1.3m.
【点睛】
此题主要考查了勾股定理的实际应用,熟练掌握勾股定理是解题关键.
19.(1)见解析;(2)见解析;(3)
【解析】
【分析】
(1)根据正方形的判定画出以AB为边的正方形ABCD即可;
(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;
(3)
解析:(1)见解析;(2)见解析;(3)
【解析】
【分析】
(1)根据正方形的判定画出以AB为边的正方形ABCD即可;
(2)画出以EF为边的等腰三角形EFG,且△EFG的周长为等腰三角形即可;
(3)由勾股定理求出CG即可.
【详解】
解:(1)如图,所作正方形ABCD即为以AB为边的正方形ABCD;
(2)如图,所作△EFG即为以EF为边的等腰三角形EFG,且△EFG的周长为;
(3)如图,CG==.
【点睛】
本题考查作图-应用与设计,勾股定理,解题的关键是理解题意,根据GE=GF=5画出等腰三角形.
20.(1)见解析;(2)90°
【分析】
(1)利用判定定理进行证明即可;
(2)根据(1)能得出对角线互相平分,得出是平行四边形,即当∠BPN=90°时,AB⊥MN,以A、M、B、N为顶点的四边形是菱
解析:(1)见解析;(2)90°
【分析】
(1)利用判定定理进行证明即可;
(2)根据(1)能得出对角线互相平分,得出是平行四边形,即当∠BPN=90°时,AB⊥MN,以A、M、B、N为顶点的四边形是菱形.
【详解】
(1)证明:P为AB中点,
PA=PB,
在△APM和△BPN中,,
△APM△BPN;
(2)连接MB、NA,
由(1)知△APM△BPN,
PM=PN,
PA=PB,
四边形MBNA为平行四边形,
当∠BPN=90°时,AB⊥MN,
四边形AMBN为菱形.
【点睛】
本题考查了三角形全等的判定及性质、菱形的判定,解题的关键是掌握相关的判定定理.
21.【解析】
【分析】
根据题意给出的解法即可求出答案即可.
【详解】
设x=+,
两边平方得:x2=()2+()2+2,
即x2=4++4﹣+6,
x2=14
∴x=±.
∵+>0,∴x=.
【点
解析:
【解析】
【分析】
根据题意给出的解法即可求出答案即可.
【详解】
设x=+,
两边平方得:x2=()2+()2+2,
即x2=4++4﹣+6,
x2=14
∴x=±.
∵+>0,∴x=.
【点睛】
本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.
22.(1);(2);(3)6.5千册
【分析】
(1)(2)根据印刷费(y元)=彩页印刷费+黑白页印刷费=1000×(彩色单价×4x+黑白单价×6x),即可解答;
(3)根据(1)的解析式可得5≤x<1
解析:(1);(2);(3)6.5千册
【分析】
(1)(2)根据印刷费(y元)=彩页印刷费+黑白页印刷费=1000×(彩色单价×4x+黑白单价×6x),即可解答;
(3)根据(1)的解析式可得5≤x<10,将y=71500代入(2)求得的解析式即可求解.
【详解】
解:(1)根据题意得:当时,
,
∴;
(2)由题意得:当时,
,
∴;
(3)当1≤x<5时,y=13000x≤65000,
∵学校印制这批纪念册的印刷费为71500元,
∴5≤x<10.
此时y=11000x=71500,
∴x=6.5,
则印刷的纪念册有6.5千册.
【点睛】
本题考查了一次函数的应用,解决本题的关键是读懂题意,找到所求量的等量关系得出函数关系式.
23.(1)见解析;(2)见解析;(3).
【分析】
(1)分别过点作,垂足分别为,勾股定理解即可;
(2)连接,过点作于点,设,经过角度的变换得出,再证明,得出,,结合已知条件,继而证,得出,,进而得到
解析:(1)见解析;(2)见解析;(3).
【分析】
(1)分别过点作,垂足分别为,勾股定理解即可;
(2)连接,过点作于点,设,经过角度的变换得出,再证明,得出,,结合已知条件,继而证,得出,,进而得到是等腰直角三角形,从而得证;
(3)分别作的中垂线,交于点,根据作图,先判断最大的时候的位置,
进而由,,构造直角三角形,勾股定理求得,从而求得△ADH的面积 .
【详解】
(1)如图,分别过点作,垂足分别为
,,
是等腰直角三角形,是等腰直角三角形
,
四边形是平行四边形
,
四边形是矩形
,
在中
(2)连接,过点作于点,
设
是等腰直角三角形
,
,
又
,,
四边形是矩形
在和中
(ASA)
在和中
(SAS)
,
即
是等腰直角三角形
即
(3)分别作的中垂线,交于点,
由题意,当点E在线段BC上运动时,不变,的长度不变,则三点共圆,
则点在以为圆心为半径的圆上运动,
,
在中
当三点共线时,取得最大值,此时情形如图:
三点共线,
点在的垂直平分线上
,
设,则
即
得:
△ADH的面积
当QM取最大值时,△ADH的面积为.
【点睛】
本题考查了平行四边形的性质,矩形的性质与判定,等腰三角形的性质,垂直平分线的性质,圆的性质,勾股定理,三角形三边关系,三角形全等的证明与性质,动点问题等,本题是一道综合性比较强的题,熟练平面几何的性质定理是解题的关键.
24.(1);(2),或;(3)5或0或
【解析】
【分析】
(1)由的面积,求出,由,进而求解;
(2)①当为时,证明,得到点的坐标为,进而求解;②当时,过点作轴于点,当时,,即可求解;
(3)分点是中
解析:(1);(2),或;(3)5或0或
【解析】
【分析】
(1)由的面积,求出,由,进而求解;
(2)①当为时,证明,得到点的坐标为,进而求解;②当时,过点作轴于点,当时,,即可求解;
(3)分点是中点、点是中点、点是中点三种情况,利用一次函数的性质,求出点的坐标,进而求解.
【详解】
解:(1)一次函数与坐标轴交于,两点,
故点、的坐标分别为、,则,
则的面积,
解得,
则设点的坐标为,
则,
解得,
故点的坐标为,
设的表达式为,
则,解得,
故直线的表达式为;
(2)令,解得,
设直线交轴于点,
在中有一个内角是,这个角不可能是,
①当为时,
过点作于点,过点作轴的平行线,交过点与轴的平行线于点,交过点与轴的平行线于点,
,
为等腰直角三角形,则,,
,,
,
,,
,
,,
故点的坐标为,
由点、坐标,同理可得,直线的表达式为,
联立和并解得,
故点的坐标为,;
②当时,
过点作轴于点,
当时,,
即点;
综上,点的坐标为,或;
(3)设点的坐标为,
则的表达式为,
联立上式与并解得,
即点的横坐标为,
①当点是中点时,
则点、的横坐标互为相反数,
即,
解得(舍去)或20,
故点的坐标为,
②当点是中点时,
同理可得:,
解得(舍去)或,
故点的坐标为,;
③当点是中点时,
同理可得,点,;
当点的坐标为,时,如图2,
设直线交轴于点,
由点、的坐标得:直线的表达式为,
故,
则的面积;
当点的坐标为时,
同理可得:的面积;
当点的坐标为,时,
同理可得:的面积,
综上,的面积为5或0或.
【点睛】
本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、三角形全等、面积的计算等,其中(3),要注意分类求解,避免遗漏.
25.(1)m=5,n=5;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.
【分析】
(1)利用非负数的性质即可解决问题.
(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ
解析:(1)m=5,n=5;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.
【分析】
(1)利用非负数的性质即可解决问题.
(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;
②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR= ;
(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.
【详解】
解:(1)∵ ,
又∵≥0,|5﹣m|≥0,
∴n﹣5=0,5﹣m=0,
∴m=5,n=5.
(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,
∵CN=OM=OC=MN,∠COM=90°,
∴四边形OMNC是正方形,
∴CO=CN,
∵∠EOC=∠N=90°,
∴△COE≌△CNQ(SAS),
∴CQ=CE,∠ECO=∠QCN,
∵∠PCQ=45°,
∴∠QCN+∠OCP=90°﹣45°=45°,
∴∠ECP=∠ECO+∠OCP=45°,
∴∠ECP=∠PCQ,
∵CP=CP,
∴△ECP≌△QCP(SAS),
∴EP=PQ,
∵EP=EO+OP=NQ+OP,
∴PQ=OP+NQ.
②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,
过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=,
∵∠SDG=135°,
∴∠SDH=180°﹣135°=45°,
∴∠FCE=∠SDH=45°,
∴∠NCE+∠OCF=45°,
∵△CEN≌△CE′O,
∴∠E′CO=∠ECN,CE=CE′,
∴∠E′CF=∠E′CO+∠OCF=45°,
∴∠E′CF=∠FCE,
∵CF=CF,
∴△E′CF≌△ECF(SAS),
∴E′F=EF
在Rt△COF中,OC=5,FC=,
由勾股定理得:OF= =,
∴FM=5﹣=,
设EN=x,则EM=5﹣x,FE=E′F=x+,
则(x+)2=()2+(5﹣x)2,
解得:x=,
∴EN=,
由勾股定理得:CE= =,
∴SR=CE=.
故答案为.
(3)当P、Q在移动过程中线段MN的长度不会发生变化.
理由:如图3中,过P作PD∥OQ,交AF于D.
∵OF=OA,
∴∠OFA=∠OAF=∠PDF,
∴PF=PD,
∵PF=AQ,
∴PD=AQ,
∵PM⊥AF,
∴DM=FD,
∵PD∥OQ,
∴∠DPN=∠PQA,
∵∠PND=∠QNA,
∴△PND≌△QNA(AAS),
∴DN=AN,
∴DN=AD,
∴MN=DM+DN=DF+AD=AF,
∵OF=OA=5,OC=3,
∴CF=,
∴BF=BC﹣CF=5﹣4=1,
∴AF=,
∴MN=AF=,
∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.
【点睛】
本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.
26.(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形
解析:(1)①详见解析;②详见解析;(2)当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由详见解析;(3)
【分析】
(1)①连接ED、BF,证明四边形BEDF是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;
(2)过D作DM⊥BE交BE的延长线于M,连接BD,证明四边形EFDM是矩形,得到EM=DF,DM=EF,∠BMD=90°,根据勾股定理计算;
(3)过P作PE⊥PD,过B作BELPE于E,根据(2)的结论求出PE,结合图形解答.
【详解】
(1)证明:①连接ED、BF,
∵BE∥DF,BE=DF,
∴四边形BEDF是平行四边形,
∴BD、EF互相平分;
②设BD交EF于点O,则OB=OD=BD,OE=OF=EF.
∵EF⊥BE,
∴∠BEF=90°.
在Rt△BEO中,BE2+OE2=OB2.
∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.
在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.
∴(BE+DF)2+EF2=2AB2;
(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,
理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.
∵BE∥DF,EF⊥BE,
∴EF⊥DF,
∴四边形EFDM是矩形,
∴EM=DF,DM=EF,∠BMD=90°,
在Rt△BDM中,BM2+DM2=BD2,
∴(BE+EM)2+DM2=BD2.
即(BE+DF)2+EF2=2AB2;
(3)解:过P作PE⊥PD,过B作BE⊥PE于E,
则由上述结论知,(BE+PD)2+PE2=2AB2.
∵∠DPB=135°,
∴∠BPE=45°,
∴∠PBE=45°,
∴BE=PE.
∴△PBE是等腰直角三角形,
∴BP=BE,
∵BP+2PD=4 ,
∴2BE+2PD=4,即BE+PD=2,
∵AB=4,
∴(2)2+PE2=2×42,
解得,PE=2,
∴BE=2,
∴PD=2﹣2.
【点睛】
本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.
展开阅读全文