收藏 分销(赏)

光波导理论与技术.pptx

上传人:可**** 文档编号:1547474 上传时间:2024-05-01 格式:PPTX 页数:81 大小:2.02MB
下载 相关 举报
光波导理论与技术.pptx_第1页
第1页 / 共81页
光波导理论与技术.pptx_第2页
第2页 / 共81页
光波导理论与技术.pptx_第3页
第3页 / 共81页
光波导理论与技术.pptx_第4页
第4页 / 共81页
光波导理论与技术.pptx_第5页
第5页 / 共81页
点击查看更多>>
资源描述

1、1 通常认为带宽是载波频率的10%左右,以目前光纤中传输的1.55m光波为例,载波频率为:带宽大约为20THz,当然这只是说光纤有这么大的带宽容量,实际上已经利用了多少带宽是另一回事。例如1.6Tbit/s光纤链路大约可以传输1930万路语音信道。1.2 光纤网络的巨大传输带宽2各种传输线路的通信容量与中继距离传输线路类型最大通信容量(路)中继距离(km)同轴电缆36002.1微波线路360040140Mbit/s光纤链路19201002.5Gbit/s光纤链路3024050601.6Tbit/s光纤链路193536005060 31.3 光通信关键技术1.3.1 光纤 主要考虑光纤4个主要的

2、传输特性:损耗、色散、非线性、双折射。1.3.2 光源和光发送端机 LD、光源调制技术、光端机。1.3.3 光检测器和光接收端机1.3.4 光电集成和光集成技术4 电磁场理论基础 2.1 电磁场基本方程 文中褐色框为麦克斯韦方程组,绿色为本构关系,红色为描写介质特性的方程,白色为电荷守恒定律5 在各项同性线性介质中,并注意到与时间有关的场函数可以写成以时间为变量的复数形式 在介质的边界上,利用积分形式的麦克斯韦方程组可得介质的边界条件方程组,在处理实际问题时,边界条件很有用。切向边界条件切向边界条件法向边界条件法向边界条件6光纤中的电磁场方程光纤中的电磁场方程折射率分布均匀介质且J=0,=0,

3、可以得到齐次达朗贝尔方程,也叫波动方程由时谐场得到亥姆霍兹方程式中,7光纤中的电磁波可以看成时谐场,满足亥姆霍兹方程,与电磁波理论中的做法一样,先求解z方向分量,然后再由麦克斯韦方程组求得其他分量采用柱坐标,电磁场写成分量式采用柱坐标,z方向的分量满足亥姆霍兹方程注意用到了缓变介质的条件,所以即使介质折射率是随坐标变化的,亥姆霍兹方程的形式与均匀介质相同8如果求得z方向的分量,其他各横向分量可以用z分量 表示出来式中kc、等与以前的意义相同5.1 光纤中的电磁场方程光纤中的电磁场方程与电磁学中公式完全相同=j 95.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解5.2.1阶跃光纤中的电

4、磁场解及导波模的截止参数阶跃光纤中的电磁场解及导波模的截止参数式中,、:待定常数,:m 阶第一类贝塞尔函数,:m 阶第二类变形贝塞尔函数。10与电磁学中公式比较 (7.6.5)(7.6.6)几个低阶第一类贝塞尔函数曲线11 几个低阶第二类变形贝塞尔函数曲线125.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解用纵向分量表示的其他分量135.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解利用边界条件得到特征方程:上面这些公式与电磁场与电磁波中公式完全相同,求解很困难,一般用数值法,如果只求各种模式的截止条件,只需令W20,求解满足边界条件的U,则相对简单一些.对于实际使用的光纤可

5、以引入弱导条件而得到简化的特征方程弱导条件简化的特征方程145.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解导波模一共可以分成4种模式即,TE0n、TM0n、EHmn、Hemn。在电磁波课程中我们已经得到了这些模的截止波长,下面直接写出结果。当W2=0,对应包层中导波模和辐射模的转折点或临界点,可以在此条件下求解纤芯内的归一化相位常数U。TE0n、TM0n模的截止波长EHmn 模的截止波长HEmn 模的截止波长,m 2HEmn 模的截止波长,m=1155.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解上面这些式子中,uxy表示x阶贝塞尔函数的第y个零点,下面表5.1 是几个低

6、阶贝塞尔函数的零点位置。HE11模对应 0 阶贝塞尔函数的第零个零点.m n012312.404833.831715.135626.3801625.520087.015598.417249.7610238.6537310.1734711.6198413.01520411.7915312.3236914.7959616.22347514.93069216.4706317.9598214.40942请注意,c(HE11),所以从理论上说,该模式可以传播任意低频的光。165.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解定义另一个重要的特征参量,V,称为光纤的归一化频率,是一个无量纲的参数。

7、当W20时,相应的 U 记为 Uc,V 记为Vc,Vc称之为归一化截止频率。显然,此时Uc Vc 且:这样,光纤中任意一个模式的传播条件是:光纤中单模传播的条件是:175.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解如果光纤参数已知,考虑对波长的要求,单模传播的条件还可以写为:或者已知波长参数和光纤折射率,考虑对光纤半径的要求,单模传播的条件还可以写为:185.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解5.2.2 对各种导波模的几何解释对各种导波模的几何解释可以用射线理论和本地平面波理论解释,TE模和TM模由光纤中传播的子午光线形成,混合模HE模和EH模则由偏斜光线形成,

8、进一步,由于水平偏振的子午光线形成TE模,而垂直偏振的子午光线则形成TM模。这是因为子午光线的路径是平面折线,它们在分界面上反射时,横向场分量不改变方向。这种情形见下图。偏斜光线的路径时空间折线,纤芯包层分界面上的不同反射点的法线方向不相同,所以不管光线的初始偏振状态如何,都有可能产生z方向的电场和磁场,故偏斜光线只能形成光纤中的混合模。垂直偏振形成TM模平行偏振形成TE模TE模是HE模(m0)时的特殊情形,TM模是EH 模(m0)的特殊情形19沿任意方向传播的均匀平面波应该表示成:沿任意方向传播的均匀平面波应该表示成:kx=kcosx、ky=kcosy、kz=kcoszkz=kcosz=从几

9、何光学的观点来看,光在在阶跃光纤中传播时,两次反射之间的光波可以看成平面波,或者叫分段平面波。此时的波矢量并不恰好在所设置的某一个坐标轴上,它在每个坐标轴上都有分量,而且,一般来说,其分量大小是变化的。205.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解5.2.3 远离截止状态时导波模的特性远离截止状态时导波模的特性5.2.4 色散曲线色散曲线远离截止状态:V ,W ,此时能量集中在纤芯中知道了U值取值范围,便于用数值法求解超越方程。215.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解225.2 阶跃光纤的严格解阶跃光纤的严格解-矢量模解矢量模解5.2.5 导波模的场型图导

10、波模的场型图23几个较低次模的模场结构24255.3 阶跃光纤的阶跃光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模对于弱导光纤所以光纤中的纵向分量比横向分量要小得多(但不等于零),可以近似认为是TEM波,称之为准TEM波。而且,由于波在传播过程中保持其偏振状态不变,所以总可以选取一个直角坐标系,使场矢量与坐标轴方向一致。这样可以使问题大大简化。处理方法如下:由直角坐标下的横向亥姆霍兹方程得到纤芯和包层中的8个分量中的任一个由麦克斯韦方程组得到其它7个分量既然传播过程中,偏振方向不改变,可以设置一个确定的横向电场和横向磁场方向,这样,12个分量就减少至8个分量。265.3 阶跃光纤的阶跃

11、光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模既然,传播过程中,偏振方向不改变,对于一个确定的场分量,就可以看成标量。既可以用直角坐标系来求解,也可以用柱坐标求解,因为边界是圆的,所以用柱坐标更简便些。275.3 阶跃光纤的阶跃光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模可以证明,不论是纤芯还是包层中,纵向场与横向场之比小于 NA,而光纤的NA都很小,一般在0.10.2纤芯中的场仍然是用贝塞尔函数描述285.3 阶跃光纤的阶跃光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模利用弱导条件和边界条件可以得到特征方程远离截止状态:V ,W 因为纤芯中的场仍然是用贝塞尔函数描述

12、,可以利用特征方程来求解贝塞尔函数的零点来分析场量的极大值点。可以证明上两式等价。利用 式:295.3 阶跃光纤的阶跃光纤的LP模模在截止临界状态:W 0,仍用Uc表示远离截止时的U值相应的模式记为LPmn模式相应的模式也记为LPmn模式用Uf表示远离截止时的U值得到,注意递推式305.3 阶跃光纤的阶跃光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模LP01是主模式,Vc0LP01HE11次最低模是LP11,Vc2.4055.3 阶跃光纤的阶跃光纤的LP模模LP11HE11、TE01,、TM01、HE21315.3 阶跃光纤的阶跃光纤的LP模模3 阶跃光纤中的阶跃光纤中的LP模模矢量模

13、与线偏振模之间可以建立如下普遍关系LPmn(m0)模是四重简并的(x、y方向任选,sinm、cosm 任选)325.3 阶跃光纤的阶跃光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模能流只有z分量,注意即使在包层中,能量也是沿纵向传播。335.3 阶跃光纤的阶跃光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模包层中传输的功率纤芯中传输的功率345.3 阶跃光纤的阶跃光纤的LP模模5.3 阶跃光纤中的阶跃光纤中的LP模模对m较大的高阶模,尽管接近截止状态,功率仍有相当一部分在纤芯中传播35365.3 阶跃光纤的阶跃光纤的LP模模可以由此估算出传播模的数量,还考虑到LPmn模的4重简并

14、性,得到模数量为:375.3 阶跃光纤的阶跃光纤的LP模模385.4 梯度光纤的解析解法梯度光纤的解析解法目的:尽可能减少模式色散2时可以得到解析解,远离截止状态时,折射率分布可以写成:对于缓变折射率介质,场仍满足亥姆霍兹方程由于等效为无穷介质,没有圆形边界的问题,采用直角坐标很方便,场的任意一个分量都满足标量亥姆霍兹方程5.4.1 变折射率亥姆霍兹方程的解法变折射率亥姆霍兹方程的解法395.4 梯度光纤的解析解法梯度光纤的解析解法将折射率表达式代入上式解上述方程的方法是:1.设场仍然向z方向传播,即关于坐标z,解的形式为 2.对横向场进行分离变量后得到两个形式上完全相同的方程韦伯方程405.

15、4 梯度光纤的解析解法梯度光纤的解析解法其解为:、s 是一个特征参量书中有错e j z书中P122倒数第8行有错415.4 梯度光纤的解析解法梯度光纤的解析解法C00/e=0.36 C00wwC00/e1/2=0.61 C00425.4 梯度光纤的解析解法梯度光纤的解析解法约与纤芯半径相等。在任意折射率分布下,单模光纤的模场半径的定义,计算方法,测量方法由ITU-T的有关建议给出。43对于高阶模5.4 梯度光纤的解析解法梯度光纤的解析解法445.4 梯度光纤的解析解法梯度光纤的解析解法455.4 梯度光纤的解析解法梯度光纤的解析解法465.4 梯度光纤的解析解法梯度光纤的解析解法将代入得:,于

16、是得LPmn模式得归一化截止频率为(误差较大):475.4 梯度光纤的解析解法梯度光纤的解析解法5.4.2 模式群和模式数量模式群和模式数量令 mn p,可以将相位常数写为抛物线折射率分布光纤中可传输的模式总量为485.5光波导的数值分析方法光波导的数值分析方法有限元方法和有限差分法时两种常用的数值法。这里只介绍有限元法可以将(5.5-1)写成(5.5-1)其中:(5.5-4)495.5光波导的数值分析方法光波导的数值分析方法(5.5-4)的求解步骤为:1.将求解区域划分为若干个小区域,将每个小区域的长函数用一个含有待定系数的试探解表示;2.利用变分原理将微分方程问题化为含有待定系数的代数方程

17、;3.利用各小区场量连续的边界将所有小区的场函数联系起来。并利用整个求解区域的边界条件构成全求解区域的待求代数方程组;4.最后求解代数方程组,得到需要的特征值和场解。1.求解区域的划分划分实例505.5光波导的数值分析方法光波导的数值分析方法2.试探函数的选择(5.5-5)(5.5-6)(5.5-7)515.5光波导的数值分析方法光波导的数值分析方法(5.5-8)525.5光波导的数值分析方法光波导的数值分析方法3.代数方程的建立535.5光波导的数值分析方法光波导的数值分析方法545.5光波导的数值分析方法光波导的数值分析方法,5.5光波导的数值分析方法光波导的数值分析方法对于具体的问题,最

18、终可以写成代数方程的形式4.代数方程的求解(略)5.5.2有关边界条件的讨论(略)有关边界条件的讨论(略)555.6 模式的正交性和完备性模式的正交性和完备性在电磁场理论中知道,凡是满足边界条件的导波模式都叫做正规模,在光波导中,实际可以存在的电磁场必然可以表示为有限多个离散的导波模式和具有连续谱的辐射模式的叠加。完备性可以证明,光波导中的模式具有正交性565.7 微扰法微扰法理想光波导:理想光波导:截面几何形状完全规则,折射率分布严格符合指定的函数规律,波导无损耗。实际光纤与理想光纤之间肯定有差别,即使是理想光纤,在外界环境变化时,也会变得“不理想”。但是一般实际光纤与理想光纤之间差别不是很

19、大,在这种情况下,微扰法处理问题很有效。理想波导折射率、相位常数、场函数5.7.1 弱导光纤的微扰解弱导光纤的微扰解设实际光纤与理想光纤都满足亥姆霍兹方程实际波导折射率、相位常数、场函数575.7 微扰法微扰法利用二维格林定理,可以证明上式最后一项面积分为零,于是:可以证明,对于场函数的微小变化,上式的相位常数表达式是稳定的即:(一阶变分为零)(5.7-2)585.7 微扰法微扰法两个结论:(5.7-4)中,除以外全变成已知,所以求出是微扰法的主要任务。595.7 微扰法微扰法下面将用例子来说明微扰法在不同微扰条件下的应用。5.7.2 折射率分布有一均匀变化的情形折射率分布有一均匀变化的情形6

20、05.7 微扰法微扰法例1.双包层光纤615.7 微扰法微扰法例 2 椭圆光纤经运算可知,在轻度偏心率条件下,圆光纤和椭圆截面光纤的主模式的传播 625.7 微扰法微扰法常数相同,对于椭圆波导,人们更关心的是其双折射特性,由下图所示的波导可以确定x轴y轴两个特殊的偏振方向。前面讨论的微扰法是建立在就标量波动方程基础之上的。为了求得更精确的值,应求解矢量波动方程,由标量解法得到的值与用矢量模解法得到的传播常数之间必然存在一个修正量。由于波导非圆结构,必然导致LP01模沿x方向偏振和沿y方向偏振的两个正交模式的传播常数与标量模传播常数的微小差异 也不相同。这就导致了光纤中的双折射现象。上述椭圆的偏

21、心率635.7 微扰法微扰法上式中:645.8 模式的横向耦合理论模式的横向耦合理论只有波导1单独存在时的场只有波导2单独存在时的场655.8 模式的横向耦合理论模式的横向耦合理论两波导之间耦合比较弱的情况下有令665.8 模式的横向耦合理论模式的横向耦合理论设675.8 模式的横向耦合理论模式的横向耦合理论最后求得耦合系数的表达式。式中,积分区域S1、S2分别为波导1和波导2的截面积,。它们都是波导单独存在时的场解,因而可以认为是已知的,由此可以由上式计算两根波导之间的耦合系数。685.9 模式的纵向耦合理论模式的纵向耦合理论光波导纵向的不均匀性,将导致波导内的传播模式正交性的破坏,但是不严

22、重时可以把其中的光波场表示为理想波导模式的叠加。书中有错经过一系列的推导,可以得出第i个传播模与第k个传播模之间的耦合系数:695.9 模式的纵向耦合理论模式的纵向耦合理论705.9 模式的纵向耦合理论模式的纵向耦合理论有关模式耦合的说明:横向耦合横向耦合类似于电磁感应,光波导在传播光信号时。它们之间会互相影响,由于横向耦合是讨论波导之间的电磁能量的耦合,而实际的光纤,从包层中透出的能量很少,一般情况下不需要考虑横向耦合的影响。但是有些特殊的光器件,例如光纤耦合器,就是用来从一根光纤中取出能量来进行测量或者传输的,则要考虑它们之间的耦合。纵向耦合纵向耦合是指光纤中不同模式之间的耦合,即使是单模

23、光纤也存在着简并模式。如果是理想的没有任何瑕疵的光纤,而且外界环境也没有任何变化,则光波导内传播的模式始终保持正交,也就没有纵向耦合现象。如果光波导有某种纵向不均匀性,在光纤中就可能出现反射光,入射光与反射光就有可能产生能量耦合。而且其他模式之间例如简并模式也有可能产生能量耦合。715.10 单模光纤单模光纤5.10.1 阶跃型光纤阶跃型光纤对于单模光纤一般,所以都采用LP模近似,LP01模是主模,LP11为次最低模,其归一化截止频率为2.405。所以归一化工作频率应该满足条件:对于G.652光纤,工作波长为1.31m,ITU规定,其截止波长范围为:725.10 单模光纤单模光纤模模主模为LP

24、01的场其横向场量按贝塞尔函数分布,可以用高斯函数去逼近贝塞尔函数,这样可以简化LP01模的分析。735.10 单模光纤单模光纤LP01模可以用LP00模线性组合抛物型折射率的主模,LP00模用高斯函数去逼近贝塞尔函数,关键是找到合适的模场,称之为最佳模场半径,记为wopt:归一化最佳模场半径可用下面经验公式计算:745.10 单模光纤单模光纤在高斯近似下,光纤纤芯和包层中传输的功率比可以用下面的简单公式计算5.10.2 梯度型单模光纤梯度型单模光纤这两种分布如下图所示755.10 单模光纤单模光纤梯度型单模光纤的分析只能采用一些近似方法,常用 近似方法是将梯度型单模光纤等效为一个阶跃光纤分析

25、。主要是以下事实为基础。阶跃光纤主模场型与阶跃光纤的主模场型十分相近;其次,阶跃光纤的场解是已知的。这种方法的关键是找到等效阶跃光纤的纤芯半径 ,相对折射率差 以及等效的归一化工作频率 。等效参数的求解是建立在变分法基础上的,这里不进行推导,假设实际光纤与等效光纤的包层折射率n2 是相同的,因而等效阶跃光纤的纤芯折射率765.10 单模光纤单模光纤如下775.10 单模光纤单模光纤5.10.3 单模光纤的双折射和偏振演化单模光纤的双折射和偏振演化因纤芯几何偏差引起的几何双折射纤纤还有其他原因可以引起双折射,例如,应力、外加电磁场等,这里不赘述。785.10 单模光纤单模光纤一般,双折射引起的光

26、的偏振状态 变化十分复杂,这里仅仅讨论一种简单的情况,即设想光纤的双折射是线性、均匀的。假设0,在单模光纤中,LP01模的偏振状态将不断变化。输入电场表达式(z0处x、y方向的场同相)输出电场表达式(z处x、y方向的场有相差)电场偏振态的演化795.10 单模光纤单模光纤获得单模单偏振的方法。805.10 单模光纤单模光纤(2)非轴对称光纤815.4 梯度光纤的解析解法梯度光纤的解析解法5章习题:1.试说明对光纤中的电磁场作准TEM波近似时的条件 2.4.有人认为,既然作了TEM波近似,电磁场传播过程中基本上不改变方向,将直角坐标y轴选取在电场方向,那么电场就只是x坐标的函数,此说法是否对?3.对阶跃,大致画出LP21模的场结构图,并说明他们是怎样由矢量模合成的 5.对于梯度光纤,分别写出LP00,LP10,LP20的电场和磁场表示式(同一模式的电场、磁场的待定常数取相同值)5.10 单模光纤单模光纤

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服