收藏 分销(赏)

LTI系统的时域频率复频域分析.pptx

上传人:胜**** 文档编号:1514445 上传时间:2024-04-29 格式:PPTX 页数:51 大小:537.19KB
下载 相关 举报
LTI系统的时域频率复频域分析.pptx_第1页
第1页 / 共51页
LTI系统的时域频率复频域分析.pptx_第2页
第2页 / 共51页
LTI系统的时域频率复频域分析.pptx_第3页
第3页 / 共51页
LTI系统的时域频率复频域分析.pptx_第4页
第4页 / 共51页
LTI系统的时域频率复频域分析.pptx_第5页
第5页 / 共51页
点击查看更多>>
资源描述

1、1LTILTI系统的描述系统的描述1.1.用用 描述系统描述系统;2.2.用线性常系数微分或差分方程(用线性常系数微分或差分方程(LCCDELCCDE)描述;)描述;3.3.用方框图描述系统(等价于用方框图描述系统(等价于LCCDELCCDE描述);描述);4.4.用系统频率响应用系统频率响应 或系统函数或系统函数21.用单位冲激响应和单位脉冲响应表示用单位冲激响应和单位脉冲响应表示LTILTI系统系统一、一、LTILTI系统时域分析系统时域分析32.用微分和差分方程描述的用微分和差分方程描述的因果因果LTI系统系统一个一个LTI系统的数学模型可以用线性常系数微分方程或线性常系统的数学模型可以

2、用线性常系数微分方程或线性常系数差分方程来描述。分析这类系统,就是要求解线性常系数系数差分方程来描述。分析这类系统,就是要求解线性常系数微分微分方程方程或差分方程。或差分方程。对于因果系统,当输入为对于因果系统,当输入为0 0时,输出也为时,输出也为0 0。也就是说对于因果。也就是说对于因果LTILTI系统,其输出的初始状态为零,此时的输出常称为系统的系统,其输出的初始状态为零,此时的输出常称为系统的零状态响应零状态响应。系统分析时,往往不是通过微分系统分析时,往往不是通过微分/差分方程的时域求解,而是差分方程的时域求解,而是通过频域或复频域分析来求解方程。但是对离散通过频域或复频域分析来求解

3、方程。但是对离散LTILTI系统,其系统,其差分方程的时域递归解法在数字滤波器的设计中有非常重要的差分方程的时域递归解法在数字滤波器的设计中有非常重要的应用。应用。4(1 1)线性常系数微分方程)线性常系数微分方程(Linear Constant-Coefficient Differential Equation,LCCDE)均为常数均为常数一阶系统二阶系统5(2 2)线性常系数差分方程)线性常系数差分方程(Linear Constant-Coefficient Difference Equation,LCCDE)一般的线性常系数差分方程可表示为:一般的线性常系数差分方程可表示为:一阶系统二阶

4、系统6对于差分方程,可以将其改写为:对于差分方程,可以将其改写为:可以看出:要求出可以看出:要求出y0,不仅要知道所有,不仅要知道所有xn(-Mn 0),还要,还要知道知道y-1、y-2、y-N,这称为一组初始条件。这称为一组初始条件。对于因果对于因果LTILTI系统系统,若当,若当n0时时,xn=0,则有则有y-1、y-2 y-N都为都为0,于是可以求得于是可以求得y0=b0 x0/a0。进一步,又可以通过进一步,又可以通过y0和x0、x1求得求得y1,依次类推可求出所有依次类推可求出所有yn。由于这种差分方程可以通过递推求解,因而称为由于这种差分方程可以通过递推求解,因而称为递递归方程(归

5、方程(recursive equationrecursive equation)。)。(3 3)线性常系数差分方程的时域递归解法)线性常系数差分方程的时域递归解法7解:8(1 1)离散时间系统离散时间系统 基本单元基本单元:A.加法器加法器 B.放大器放大器(乘以系数乘以系数)C.单位延时器单位延时器一阶差分方程一阶差分方程 :相加 延时 相乘a3.LTI系统的方框图表示系统的方框图表示D9(2)(2)连续时间系统连续时间系统一阶微分方程一阶微分方程 :微分 相加 相乘 基本单元基本单元:A.加法器加法器 B.放大器放大器 C.积分器积分器a10例:写出右图所示系统的差分方程例:写出右图所示系

6、统的差分方程由加法器可写出等式:例:画出由微分方程例:画出由微分方程 所描述的所描述的LTI系统的框图系统的框图将方程写为:依上式可画出系统框图如右图当当系系统统框框图图中中有有多多个个积积分分器器或或延延时时器器时时,就就可可以以描描述述高高阶阶系统,其对应的方程为高阶微分方程或差分方程。系统,其对应的方程为高阶微分方程或差分方程。11例:例:某连续LTI系统的系统框图如下,求系统的微分方程 解解 由图可知第一个和第二个积分器的输入分别为 ,根据加法器的输入输出关系有 所以系统的微分方程为:+3-212例:求下图所示系统的微分方程例:求下图所示系统的微分方程21+-13例:求下图所示系统的差

7、分方程例:求下图所示系统的差分方程xnf nf n-114例:例:某连续LTI系统的系统框图如下,求系统的微分方程 4解解 选图中右端积分器的输出为中间变量f(t),则其输入为f(t),左端积分器的输入为f(t),如图所示。写出左端加法器的输出 右端加法器的输出:所以系统的微分方程为:由(2)可得y(t),y(t)为:15二二.LTI.LTI系统的频域分析系统的频域分析1.LTI系统的频域分析和频率响应系统的频域分析和频率响应 根据卷积特性根据卷积特性,可以对可以对LTI系统进行频域分析系统进行频域分析,其过其过程为程为:1.1.由由2.2.根据系统的描述,求出根据系统的描述,求出3.3.4.

8、4.16从信号分解观点分析从信号分解观点分析对于任意 x(t),可以分解为无穷多特征函数 的线性组合,每一个特征函数对应的系数为频域分析法:也是建立在线性系统具有叠加性、齐次性基础频域分析法:也是建立在线性系统具有叠加性、齐次性基础上,与时域分析法不同处在于信号分解的基本函数不同。上,与时域分析法不同处在于信号分解的基本函数不同。17 由于由于 的傅氏变换的傅氏变换 就是频率为就是频率为 的复指数信号的复指数信号 通过通过LTI系统时,系统对系统时,系统对输入信号在幅度上产生的影响,所以称为输入信号在幅度上产生的影响,所以称为系统的频系统的频率响应率响应。鉴于鉴于 与与 是一一对应的,因而是一

9、一对应的,因而LTI系统可以由其频率响应完全表征系统可以由其频率响应完全表征。仅当仅当LTI系统是稳定系统时,即:系统是稳定系统时,即:其频率响应其频率响应 存在存在18-幅频特性幅频特性(幅频响应)(幅频响应)-相频特性相频特性(相频响应)(相频响应)系统的输出响应系统的输出响应y(t)令:令:19对对LCCDE两边进行傅立叶变换:两边进行傅立叶变换:由于由于 故有:故有:2.由由LCCDE描述的因果描述的因果LTI系统的频域分析系统的频域分析可见由可见由LCCDELCCDE描述的因果描述的因果LTI LTI 系统其系统其频率特性是一个有理函数频率特性是一个有理函数。由由 做反变换,可以求得

10、做反变换,可以求得对有理函数求傅立叶反变换通常采用对有理函数求傅立叶反变换通常采用部分分式展开部分分式展开和和利用常用利用常用变换对变换对进行。进行。20例:描述一因果例:描述一因果LTI系统的微分方程为:系统的微分方程为:求系统的频率响应,并求求系统的频率响应,并求 时系统的响应时系统的响应解:系统方程两边作解:系统方程两边作FTx(t)为单边指数函数,其为单边指数函数,其FT为为系统的频率响应函数系统的频率响应函数由傅里叶逆变换求由傅里叶逆变换求y(t)21例:例:可见,可见,对对由微分方程所描述的系统通过求频率由微分方程所描述的系统通过求频率响应可以方便地求出其单位冲激响应。响应可以方便

11、地求出其单位冲激响应。22解法一:时域递归解法例:描述一离散因果例:描述一离散因果LTI系统的差分方程为:系统的差分方程为:求系统的频率响应求系统的频率响应设 ,则23解法二:频域解法例:描述一离散因果例:描述一离散因果LTI系统的差分方程为:系统的差分方程为:求系统的频率响应求系统的频率响应24例:例:某连续LTI系统的系统框图如下,求系统的单位冲激响应 解解 由傅立叶变换的微分特性首先写出图中各处信号的傅立叶变换,根据加法器的输入输出关系有 所以系统的单位冲激响应为:+-3-23.由由方框图方框图描述的描述的LTI系统的频率特性系统的频率特性25例:求下图系统的频率响应例:求下图系统的频率

12、响应解解 设第2个积分器的输出为w(t),相应的傅立叶变换为 由两个加法器可以写出如下关系式:26互联系统的互联系统的*级联级联:*并联并联:H1(j)H2(j)H1(j)H2(j)27*反馈联结反馈联结:28一个信号所携带的全部信息分别包含在其频谱的模和一个信号所携带的全部信息分别包含在其频谱的模和相位中相位中:LTI系统对输入信号所起的作用包括两个方面系统对输入信号所起的作用包括两个方面:1.改变输入信号各频率分量的幅度;改变输入信号各频率分量的幅度;2.改变输入信号各频率分量的相位。改变输入信号各频率分量的相位。4.无失真传输无失真传输以下内容为第六章的部分内容以下内容为第六章的部分内容

13、29 在工程实际中,不同的应用场合,对幅度失在工程实际中,不同的应用场合,对幅度失真和相位失真有不同的敏感程度,也会有不同真和相位失真有不同的敏感程度,也会有不同的技术指标要求。的技术指标要求。因此,导致信号失真的原因有两种:因此,导致信号失真的原因有两种:1.1.幅度失真:幅度失真:由于频谱的模改变而引起的失真。由于频谱的模改变而引起的失真。2.2.相位失真:相位失真:由于频谱的相位改变引起的失真。由于频谱的相位改变引起的失真。30(1)线性与非线性相位线性与非线性相位 当相位特性仅仅是附加一个线性相移时,只引当相位特性仅仅是附加一个线性相移时,只引起信号在时间上的平移。如连续时间起信号在时

14、间上的平移。如连续时间LTI系统:系统:则则 此时并未丢失信号所携带的任何信息,只是发此时并未丢失信号所携带的任何信息,只是发生时间上的延迟,因而在工程应用中是允许的。生时间上的延迟,因而在工程应用中是允许的。信号在传输过程中,相位特性或幅度特性发生信号在传输过程中,相位特性或幅度特性发生改变都会引起改变都会引起信号波形的改变信号波形的改变,即发生,即发生失真失真。如果系统的相位特性是非线性的,由于不同频率如果系统的相位特性是非线性的,由于不同频率分量受相位特性影响所产生的时移不同,叠加起来分量受相位特性影响所产生的时移不同,叠加起来一定会变成一个与原来信号很不相同的信号波形。一定会变成一个与

15、原来信号很不相同的信号波形。31(2)(2)信号的不失真传输条件信号的不失真传输条件 如果系统响应与输入信号满足下列条件,可视如果系统响应与输入信号满足下列条件,可视为在传输中未发生失真:为在传输中未发生失真:这就要求系统的频率特性为这就要求系统的频率特性为如果一个系统的如果一个系统的幅频特性是一个常数幅频特性是一个常数,称这种,称这种系统为系统为全通系统全通系统。32时域表征时域表征 据此可得出据此可得出信号传输的不失真条件信号传输的不失真条件:0 0 通常,系统若在被传输信号的带宽范围内满足不通常,系统若在被传输信号的带宽范围内满足不失真条件,则认为该系统对此信号是不失真系统。失真条件,则

16、认为该系统对此信号是不失真系统。频域表征频域表征 0 0335.理想频率选择性滤波器理想频率选择性滤波器1.1.频率成形滤波器(改变各分量的幅度与相位)频率成形滤波器(改变各分量的幅度与相位)2.2.频率选择性滤波器(去除某些频率分量)频率选择性滤波器(去除某些频率分量)滤波:滤波:通过系统改变信号中各频率分量的相对大小和通过系统改变信号中各频率分量的相对大小和相位,甚至完全去除某些频率分量的过程称为相位,甚至完全去除某些频率分量的过程称为滤波滤波。滤波器可分为两大类:滤波器可分为两大类:理想频率选择性滤波器理想频率选择性滤波器的频率特性在某一个(或几个)的频率特性在某一个(或几个)频段内,频

17、率响应为常数,而在其它频段内频率响应等频段内,频率响应为常数,而在其它频段内频率响应等于零。于零。34连续时间理想频率选择性滤波器的频率特性连续时间理想频率选择性滤波器的频率特性低通低通高通高通带阻带阻带通带通滤波器的滤波器的通带通带(pass band):(pass band):允许信号完全通过的频段允许信号完全通过的频段;阻带阻带(stop band):(stop band):完全不允许信号通过的频段。完全不允许信号通过的频段。351 1理想低通的频率响应理想低通的频率响应例例.中心频率可变中心频率可变的带通滤波器:的带通滤波器:各种滤波器的特性都可以从理想低通特性而来。各种滤波器的特性都

18、可以从理想低通特性而来。361 1等效带通滤波器等效带通滤波器 相当于从相当于从 中直接用一个带通滤波器滤出的中直接用一个带通滤波器滤出的频谱。表明整个系统相当于一个中心频率为频谱。表明整个系统相当于一个中心频率为 的的带通滤波器,改变带通滤波器,改变 即可实现中心频率可变。即可实现中心频率可变。37理想滤波器的时域特性理想滤波器的时域特性以理想低通滤波器为例以理想低通滤波器为例连续时间理想低通滤波器连续时间理想低通滤波器1 1由傅里叶变换可得由傅里叶变换可得:383.3.在工程应用中,当要设计一个滤波器时,必须对时在工程应用中,当要设计一个滤波器时,必须对时域特性和频域特性作出恰当的折中。往

19、往用一个物理域特性和频域特性作出恰当的折中。往往用一个物理可实现的频率特性去逼近理想特性,这种物理可实现可实现的频率特性去逼近理想特性,这种物理可实现的系统就称为的系统就称为非理想滤波器。非理想滤波器。1.1.理想滤波器理想滤波器是非因果系统,是非因果系统,因而是因而是物理不可实现物理不可实现的;的;2.2.尽管从频域滤波的角度看,理想滤波器的频率特性是尽管从频域滤波的角度看,理想滤波器的频率特性是最佳的。但它们的时域特性并不是最佳的。最佳的。但它们的时域特性并不是最佳的。或或 都有起伏、旁瓣、主瓣,这表明理想滤波器的都有起伏、旁瓣、主瓣,这表明理想滤波器的时域特性时域特性与频域特性并不兼容与

20、频域特性并不兼容。非理想滤波器非理想滤波器(简单了解即可)(简单了解即可)39通常将偏离单位增益的通常将偏离单位增益的 称为称为通带起伏通带起伏(或波纹或波纹),),称为称为阻带起伏阻带起伏(或波纹或波纹),),称为称为通带边缘通带边缘,为为阻带阻带边缘边缘,为为过渡带过渡带。非理想低通滤波器的容限非理想低通滤波器的容限对理想特性逼近得越精确,实现时付出的代价越大,对理想特性逼近得越精确,实现时付出的代价越大,系统的复杂程度也越高。系统的复杂程度也越高。401.1.系统函数的概念:系统函数的概念:以卷积特性为基础,可以建立以卷积特性为基础,可以建立LTILTI系统的拉氏变换分系统的拉氏变换分析

21、方法,即析方法,即其中其中 是是 的拉氏变换,称为的拉氏变换,称为系统函数系统函数或或转移函转移函数、传递函数数、传递函数。三、三、用拉氏变换分析与表征用拉氏变换分析与表征LTI系统系统 -LTI系统的复频域分析系统的复频域分析这就是这就是LTILTI系统的傅里叶分析。系统的傅里叶分析。即是系统的即是系统的频率频率响应响应。如果如果 、的的ROCROC包括包括 轴,以轴,以 代入,代入,即有即有41如果如果 时时 ,则,则系统是反因果的系统是反因果的。因果系统因果系统的的 是右边信号,是右边信号,的的ROCROC必是最右边极点必是最右边极点的右边的右边反因果系统反因果系统的的 是左边信号,是左

22、边信号,的的ROCROC必是最左边极必是最左边极点的左边点的左边应该强调指出,由应该强调指出,由ROCROC的特征,反过来并不能判定系统是的特征,反过来并不能判定系统是否因果。否因果。ROCROC是最右边极点的右边并不一定系统因果。是最右边极点的右边并不一定系统因果。只有只有当当 是有理函数时,逆命题才成立(见下面例是有理函数时,逆命题才成立(见下面例2 2)2.2.用系统函数表征用系统函数表征LTILTI系统:系统:(1)(1)因果性:因果性:如果如果 时时 ,则,则系统是因果的系统是因果的。连同相应的连同相应的ROCROC也能完全描述一个也能完全描述一个LTILTI系统。系统的系统。系统的

23、许多重要特性在许多重要特性在 及其及其ROCROC中一定有具体的体现。中一定有具体的体现。42(2)(2)稳定性:稳定性:如果系统稳定如果系统稳定,则有则有 。因此。因此 必必存在。意味着存在。意味着 的的ROCROC必然包括必然包括 轴轴。综合以上两点,可以得到:综合以上两点,可以得到:因果稳定系统的因果稳定系统的 ,其,其全部极点必须位于全部极点必须位于S S平面的左半边。平面的左半边。例例1.1.某系统的某系统的 ,显然该系统是显然该系统是因果的,确定系统的稳定性。因果的,确定系统的稳定性。显然,显然,ROCROC是最右边极点的右边。是最右边极点的右边。ROCROC包括包括 轴轴系统也是

24、稳定的。系统也是稳定的。的全部极点都在的全部极点都在S S平面的左半边。平面的左半边。43例例2.2.若有若有 的的ROC是最右边极点的右边,但是最右边极点的右边,但 是非有是非有理函数理函数.而而 ,故系统是非因果的。,故系统是非因果的。由于由于ROC包括包括 轴,该系统仍是稳定的。轴,该系统仍是稳定的。而对系统而对系统 仍是非有理函数,仍是非有理函数,ROC是最右边极点的右是最右边极点的右边,但由于边,但由于 ,系统是因果的。,系统是因果的。44结结 论:论:1.1.LTILTI系统的系统的系统函数是有理函数系统函数是有理函数,若其全部极,若其全部极点位于点位于S S平面的左半平面,则系统

25、是因果、稳平面的左半平面,则系统是因果、稳定的。定的。2.2.若若LTILTI系统为因果系统,则系统函数的系统为因果系统,则系统函数的ROCROC是是最右边极点的右边。若系统反因果,则系统函最右边极点的右边。若系统反因果,则系统函数的数的ROCROC是最左边极点的左边。是最左边极点的左边。3.3.如果如果LTILTI系统是稳定的,则系统函数的系统是稳定的,则系统函数的ROCROC必然必然包括包括 轴。轴。453.3.由由LCCDELCCDE描述的描述的LTILTI系统的复频域分析系统的复频域分析对对是一个有理函数是一个有理函数进行拉氏变换有:进行拉氏变换有:46例例3 3:已知系统函数为:已知

26、系统函数为 ,求系统,求系统的零、极点,并判断系统的稳定性的零、极点,并判断系统的稳定性解:解:零点:零点:极点:极点:系统的极点都在系统的极点都在s s平面的左半平面,系统是稳定的。平面的左半平面,系统是稳定的。xxj j-3 -2 -1 0-3 -2 -1 01 1-1-147例例4 4:给定因果:给定因果LTILTI系统的微分方程为系统的微分方程为 判断系统的稳定性,并求当输入为判断系统的稳定性,并求当输入为 时系统的输出响应时系统的输出响应解:方程两边作双边拉氏变换:解:方程两边作双边拉氏变换:系统仅有一个极点系统仅有一个极点s=-3,s=-3,在在s s平面的左半平面,所以系统稳定;平面的左半平面,所以系统稳定;484.4.系统互联时的系统函数系统互联时的系统函数级联:级联:包括包括并联:并联:包括包括49反馈联结:反馈联结:包括包括50例例5 5:已知:已知LTILTI系统如下图所示,系统如下图所示,1.1.求系统函数求系统函数H(s)H(s)并判断系统并判断系统的稳定性;的稳定性;2.2.激励为激励为时,求系统响应时,求系统响应+-x(t)y(t)51

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服