1、平行四边形【知识脉络】 【基础知识】. 平行四边形(1)平行四边形性质 1)平行四边形的定义:有两组对边分别平行的四边形叫做平行四边形. 2)平行四边形的性质(包括边、角、对角线三方面) : 边:平行四边形的两组对边分别平行; 平行四边形的两组对边分别相等; 角:平行四边形的两组对角分别相等; 对角线:平行四边形的对角线互相平分. 【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点.(2)平行四边形判定 1)平行四边形的判定(包括边、角、对角线三方面):边:两组对边分别平行的四边形是平行四边形; 两组对边分别相等的四边形是平行四边形; 一组对边平行且相等的四边形是平
2、行四边形;角:两组对角分别相等的四边形是平行四边形;对角线:对角线互相平分的四边形是平行四边形. 2)三角形中位线:连接三角形两边中点的线段叫做三角形的中位线. 3)三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 4)平行线间的距离: 两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。两条平行线间的距离处处相等。. 矩形(1)矩形的性质 1)矩形的定义:有一个角是直角的平行四边形叫做矩形. 2)矩形的性质:矩形具有平行四边形的所有性质;矩形的四个角都是直角;矩形的对角线相等;矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是
3、对角线的交点.(2)矩形的判定1)矩形的判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩形.2)证明一个四边形是矩形的步骤: 方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等; 方法二:若一个四边形中的直角较多,则可证三个角为直角.3)直角三角形斜边中线定理:(如右图) 直角三角形斜边上的中线等于斜边的一半. 菱形(1)菱形的性质 1)菱形的定义:有一组邻边相等的平行四边形叫做菱形. 2)菱形的性质: 菱形具有平行四边形的所有性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; 菱形既是轴对称
4、图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3)菱形的面积公式:菱形的两条对角线的长分别为,则(2)菱形的判定 1)菱形的判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形. 2)证明一个四边形是菱形的步骤:方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”;方法二:直接证明“四条边相等”. 正方形(1)正方形的性质 1)正方形的定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形. 2)正方形的性质: 正方形具有平行四边形、矩形、菱形的所有性质,即正方形的四条边都相等;四个角都是直角;对角线互相垂直平分且相等,并且每条对角线平分一组对角. 3)正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.(2)正方形的判定 1)正方形的判定: 有一组邻边相等且有一个角是直角的平行四边形是正方形; 有一组邻边相等的矩形是正方形; 对角线互相垂直的矩形是正方形; 有一个角是直角的菱形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直平分且相等的四边形是正方形.3