1、直角三角形全等判定(提高)【学习目标】1理解和掌握判定直角三角形全等的一种特殊方法“斜边,直角边”(即“HL”).2能熟练地用判定一般三角形全等的方法及判定直角三角形的特殊方法判定两个直角三角形全等. 【要点梳理】要点一、判定直角三角形全等的一般方法由三角形全等的条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.这里用到的是“AAS”,“ASA”或“SAS”判定定理.要点二、判定直角三角形全等的特殊方法斜边,直角边定理在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).这个判定方法是直角三
2、角形所独有的,一般三角形不具备.要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了. (2)判定两个直角三角形全等的方法共有5种:SAS、ASA、AAS、SSS、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【典型例题】类型一、直角三角形全等的判定“HL”1、 判断满足下列条件的两个直角三角形是否全等,不全等的画“”,全等的注明理由:(1)一个锐角和这个角的对边对应
3、相等;( )(2)一个锐角和斜边对应相等; ( )(3)两直角边对应相等; ( )(4)一条直角边和斜边对应相等 ( )【答案】(1)全等,“AAS”;(2)全等,“AAS”;(3)全等,“SAS”;(4)全等,“HL”.【解析】理解题意,画出图形,根据全等三角形的判定来判断.【总结升华】直角三角形全等可用的判定方法有5种:SAS、ASA、AAS、SSS、HL.举一反三:【变式】下列说法中,正确的画“”;错误的画“”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等( )(2)有两边和其中一边上的高对应相等的两个三角形全等( )(3)有两边和第三边上的高对应相等的两
4、个三角形全等( )【答案】(1);(2);在ABC和DBC中,ABDB,AE和DF是其中一边上的高,AEDF(3). 在ABC和ABD中,ABAB,ADAC,AE为第三边上的高,2、已知:如图,DEAC,BFAC,ADBC,DEBF.求证:ABDC.【思路点拨】从已知条件只能先证出RtADERtCBF,从结论又需证RtCDERtABF.【答案与解析】证明:DEAC,BFAC, 在RtADE与RtCBF中 RtADERtCBF (HL) AECF,DEBFAEEFCFEF,即AFCE 在RtCDE与RtABF中, RtCDERtABF(SAS) DCEBAF ABDC.【总结升华】我们分析已知能
5、推证出什么,再看要证到这个结论,我们还需要哪些条件,这样从已知和结论向中间推进,从而证出题目.3、如图 ABAC,BDAC于D,CEAB于E,BD、CE相交于F求证:AF平分BAC 【思路点拨】若能证得ADAE,由于ADB、AEC都是直角,可证得RtADFRtAEF,而要证ADAE,就应先考虑RtABD与RtAEC,由题意已知ABAC,BAC是公共角,可证得RtABDRtACE【答案与解析】证明: 在RtABD与RtACE中RtABDRtACE(AAS)ADAE(全等三角形对应边相等)在RtADF与RtAEF中RtADFRtAEF(HL)DAFEAF(全等三角形对应角相等)AF平分BAC(角平
6、分线的定义)【总结升华】条件和结论相互转化,有时需要通过多次三角形全等得出待求的结论.举一反三:【变式】已知,如图,AC、BD相交于O,ACBD,CD90 .求证:OCOD.【答案】CD90ABD、ACB为直角三角形在RtABD和RtBAC中RtABDRtBAC(HL)ADBC在AOD和BOC中AODBOC(AAS)ODOC4、如图,ABC中,ACB90,ACBC,AE是BC边上的中线,过C作CFAE,垂足为F,过B作BDBC交CF的延长线于D.(1)求证:AECD;(2)若AC12,求BD的长.【答案与解析】(1)证明:DBBC,CFAE,DCBDDCBAEC90DAEC又DBCECA90,且BCCA,DBCECA(AAS)AECD(2)解:由(1)得AECD,ACBC, CDBAEC(HL) BDECBCAC,且AC12 BD6【总结升华】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件