1、高一数学必修3模块测试题(人A版)一、选择题(每小题6分,共60分)1从学号为050的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是( ).A. 5,15,25,35,45 B. 1,2,3,4,5 C. 2,4,6,8,10 D. 4,13,22,31,402某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是( ).A至少有1名男生与全是女生 B至少有1名男生与全是男生 C至少有1名男生与至少有1名女生 D恰有1名男生与恰有2名女生3A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平
2、均成绩分别是,观察茎叶图,下列结论正确的是( ).A. ,B比A成绩稳定B. ,B比A成绩稳定C. ,A比B成绩稳定D. ,A比B成绩稳定4某程序框图如右图所示,该程序运行后输出的最后一个数是( ).A B C D5O为边长为6的等边三角形内心,P是三角形内任一点,n不是质数n不是质数是否r=0使得OP的概率是( ).A B C D6如右图,是某算法流程图的一部分,其算法的逻辑结构为 ( ) A. 顺序结构 B. 判断结构 C. 条件结构 D. 循环结构7某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个
3、容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是 ( )A、 分层抽样法,系统抽样法 B、分层抽样法,简单随机抽样法C、系统抽样法,分层抽样法 D、简单随机抽样法,分层抽样法8下列对一组数据的分析,不正确的说法是 ( )A、数据极差越小,样本数据分布越集中、稳定B、数据平均数越小,样本数据分布越集中、稳定C、数据标准差越小,样本数据分布越集中、稳定D、数据方差越小,样本数据分布越集中、稳定9. 输入两个数a,b,要输出b,a,下面语句正确一组是 ( ).
4、a=cc=bb=ac=bb=aa=c b=aa=ba=bb=a A. B. C. D. 10先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是 ( )A. B. C. D. 二、填空题(每小题4分,共15分)11计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句: , , , , 。12为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生的身高,单位:cm),分组情况如下:分组151.5158.5158.5165.5165.5172.5172.5179.5频数62l频率0.1则表中的 , 。13如右图,在正方形内有一扇形(见阴影部分),扇形对应的
5、圆心是正方形的一顶点,半径为正方形的边长。在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为 。(用分数表示)三、解答题:(共75分,解答题应书写合理的解答或推理过程)14.(6分)为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为,第二小组频数为12(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?(3)通过该统计图,可以估计该地学生跳绳次数的众数是 ,中位数是 。15(14分)下面是计算应纳税所得额的算法过程,其算法如下:第
6、一步 输入工资x(注x=5000);第二步 如果x=800,那么y=0;如果800x=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300)第三步 输出税款y, 结束。请写出该算法的程序框图和程序。(注意:程序框图与程序必须对应)茎叶图16(15分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:0010:00间各自的点击量,得如下所示的统计图,根据统计图:(1)甲、乙两个网站点击量的极差分别是多少? (4分)(2)甲网站点击量在10,40间的频率是多少? (4分)(3)甲、乙两个网站哪个更受欢迎?并说明理由。 (4分)117(15分)在人群流量较
7、大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。(1)摸出的3个球为白球的概率是多少? (2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?18(15分)假设你家订了一份报纸,送报人可能在早上6点8点之间把报纸送到你家,你每天离家去工作的时间在早上7点9点之间 (1)你离家前不能看到报纸
8、(称事件A)的概率是多少?(6分,须有过程)(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)(6分)19.(10分)给出50个数,1,2,4,7,11,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推. 要求计算这50个数的和. 先将下面给出的程序框图补充完整,再根据程序框图写出程序. 1. 把程序框图补充完整: (1)_ (3分) (2)_ (4分)(2)结 束i= i +1(1)开 始是输出 s否i = 1P = 1S= 0S= s + p 2. 程序:(7分) 二、填空题11输入语句,输
9、出语句,赋值语句,条件语句,循环语句12由题设条件m=600.1=6故身高在165.5172.5之间的频数是60-6-21-6=27故a=27/ 60 =0.45故答案为:6;0.4513令正方形的边长为a,则S正方形=a2,则扇形所在圆的半径也为a,则S扇形=1 /4 (a2 )则黄豆落在阴影区域内的概率P=1-S扇形 /S正方形 =(4-)/ 4 故答案为:(4-)/ 4 三解答题14.解:(1)从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12样本容量是 (2+4+17+15+9+3)12 4 =150,第二小组的频率是 12/ 150 =0.08(2)次数在1
10、10以上为达标,在这组数据中达标的个体数一共有17+15+9+3,全体学生的达标率估计是(17+15+9+3 )/50 =0.88 6分(3)在频率分布直方图中最高的小长方形的底边的中点就是这组数据的众数,即(110+120 )/2 =115,7分 处在把频率分布直方图所有的小长方形的面积分成两部分的一条垂直与横轴的线对应的横标就是中位数121.3 8分15解程序如下:框图如下:16解:(1)甲网站的极差为:73-8=65;乙网站的极差为:71-5=66(4分)(2)甲网站点击量在10,40间的频率为4 /14 =2 7 (3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上
11、方从数据的分布情况来看,甲网站更受欢迎17解:把3只黄色乒乓球标记为A、B、C,3只白色的乒乓球标记为1、2、3从6个球中随机摸出3个的基本事件为:ABC、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个(1)事件E=摸出的3个球为白球,事件E包含的基本事件有1个,即摸出123:P(E)=1/ 20 =0.05(2)事件F=摸出的3个球为2个黄球1个白球,事件F包含的基本事件有9个,P(F)=9 /20 =0.45(3)事件G=摸出的3个球为同一颜色=摸出的3个球为白球或摸出的3个球
12、为黄球,P(G)=2 /20 =0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G发生有10次,不发生90次则一天可赚901-105=40,每月可赚1200元。18解:(1)如图,设送报人到达的时间为X,小王离家去工作的时间为Y(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为=(x,y)|6X8,7Y9一个正方形区域,面积为S=4,事件A表示小王离家前不能看到报纸,所构成的区域为A=(X,Y)|6X8,7Y9,XY 即图中的阴影部分,面积为SA=0.5这是一个几何概型,所以P(A)=SA/ S =0.5/ 4 =0.125答:小王离家前不能看到报纸的概率是0.125(6分)(2)用计算机产生随机数摸拟试验,X是0-1之间的均匀随机数,Y也是0-1之间的均匀随机数,各产生1002X+6表示早上6点-8点,2Y+7表示早上7点-9点,依序计算,如果满足2X+62Y+7,那小王离家前不能看到报纸,统计共有多少为M,则M 100 即为估计的概率19.解:(1)循环变量的初值为1,终边为50,根据循环要实现的功能,故循环体内的语句应为:i=50;语句应为:p=p+I 故答案为:i=50;p=p+i(2)程序如下:i=1p=1S=0WHILE i50 S=S+p p=p+i i=i+1WENDPRINT SEND