1、章节名称函数的概念学时教学目标课程标准:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型。学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用了解构成函数的要素,会利用函数的定义判断函数。本节教学目标:知识和能力:回顾初中阶段的函数的基本概念。 介绍函数的“集合式”定义及符号表示,把握自变量与因变量之间的“对应关系”,确定具有特定限制条件的定义域、值域。过程和方法:从大量的实际例子出发抽象概括函数的概念,在过程中设法给学生创造自然界、经济生活中的情景,让学生感受函数在多方面的广泛应用。情感态度和价值观:经历一般规律的探索过程、发展学生的抽象思维能力 启发学生们
2、利用初中学习的简单函数表达较为复杂的函数 利用函数解决实际问题,发展学生的数学应用能力学生特征学生们刚进入高中,还没能完全适应高中生活,知识点的讲解要要由浅入深,尽量与初中学习的内容相联系,避免过于突兀,使学生丧失学习的兴趣!该阶段学生已经了解和会运用集合的语言代替单纯的数的语言。学习 目标描述知识点编 号学习目标具 体 描 述 语 句1.2.1-11.2.1-21.2.1-3能够想起中学函数的知识能够理解y=f(x)给定一个函数能指出三要素可以回忆起初中学过的函数的定义并理解。知道现用y=f(x)表示的意义并能够理解用集合的语言表达函数以及理解俩个集合之间映射关系。给定函数能够清楚其三要素以
3、及在实际生活实例中能够利用函数表达式解决实际问题。项 目内 容解 决 措 施教学重点函数的“集合式”定义及符号表示 对函数三要素的理解由以往的旧知识开始引入并以大量例题帮助学生理解。教学难点对函数抽象符号的认识和使用由生活实例并利用初中知识对学生进行讲解教学媒体(资源)的选择知识点编 号学习目标媒体类型媒体内容要点教学作用使用方式所 得 结 论占用时间媒体来源1.2.1-11.2.1-2借助多媒体引导学生回顾课堂内容能引起学生的思考ppt初中所涉及的函数的概念及一些图像表示方法一些关于臭氧层资料的图片吸引学生的兴趣,利用一些图像加强学生对函数的理解吸引学生兴趣,引发思考边讲解边播看可以回顾初中
4、的函数定义和一些函数图像的表示!5分钟1分钟结合互联网自己动手设计互联网媒体在教学中的作用分为:A.提供事实,建立经验;B.创设情境,引发动机;C.举例验证,建立概念;D.提供示范,正确操作;E.呈现过程,形成表象;F.演绎原理,启发思维;G.设难置疑,引起思辨;H.展示事例,开阔视野;I.欣赏审美,陶冶情操;J.归纳总结,复习巩固;K.自定义。媒体的使用方式包括:A.设疑播放讲解;B.设疑播放讨论;C.讲解播放概括;D.讲解播放举例;E.播放提问讲解;F.播放讨论总结;G.边播放、边讲解;H. 边播放、边议论;I.学习者自己操作媒体进行学习;J.自定义。板书设计函数的定义函数的定义见ppt
5、(初中)函数的概念:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx引例1xxxxxxx思考:xxxxxxx引例2xxxxxxx思考:xxxxxxx引例3xxxxxxx思考:xxxxxxx引例4xxxxxxx思考:xxxxxxx练习巩固作业自变量:xxx因变量:xxx值域:xxxx注意:xxxxxxx例题1、总结:例题2总结:例题3总结:课堂教学过程结构的设计教学模式: 观察分析比较归纳概括教学过程:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称fAB为从集合A到集合B的一个函数
6、.记作:yf(x),xA其中x叫自变量,x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合y|yf(x),xA叫函数的值域.例如:(1)一次函数f(x)axb(a0)的定义域是R,值域也是R.对于R中的任意一个数x,在R中都有一个数f(x)axb(a0)和它对应.(2)反比例函数f(x) (k0)的定义域是Ax|x0,值域是Bf(x)|f(x)0,对于A中的任意一个实数x,在B中都有一个实数f(x) (k0)和它对应.注意:函数是非空数集到非空数集上的一种对应.符号“f:AB”表示A到B的一个函数,它有三个要素;定义域、值域、对应关系,三者缺一不可.集合
7、A中数的任意性,集合B中数的惟一性.f表示对应关系,在不同的函数中,f的具体含义不一样.f(x)是一个符号,绝对不能理解为f与x的乘积.对于只给出解析式yf(x) 函数,而没有指明它的定义域.那么函数的定义域就是指能使这个式子有意义的实数x的集合.(3)(2)(1)观察下列几组从A到B的对应,指出哪些对应是函数?哪些不是?是函数的指出其定义域与值域。(5)(4)函数概念用集合、对应的语言叙述后,我们就很容易回答前面所提出的两个问题.问题1.y=1(xR)是函数,因为对于实数集R中的任何一个数x,按照对应关系“函数值是1”,在R中y都有惟一确定的值1与它对应,所以说y是x的函数.又如:例2 判断
8、下列对应是否为函数:x (2) x y,其中y2=x,(3) x y,其中(4) 已知集合A=R,B=-1,1,对应法则f: 当x为有理数时,f(x)=-1;当x为无理数时,f(x)=1,对应 f: A B在下列图象中,请指出哪一个是函数图象,哪一个不是,并说明理由(4)(3)(2)(1)问题2.yx与y不是同一个函数,因为尽管它们的对应关系一样,但yx的定义域是R,而y的定义域是x|x0. 所以yx与y不是同一个函数.又如:例4、下列两个函数是否表示同一个函数(1)f()=,g(t)=(2) (3) (4) , ,思考:(1)两函数定义域相同、值域相同,这两函数相同吗?(2)两函数定义域相同
9、、对应法则相同,这两函数相同吗?(3)两函数对应法则相同、值域相同,这两函数相同吗?当确定用解析式yf(x)表示的函数的定义域时,常有以下几种情况:(1)如果f(x)是整式,那么函数的定义域是实数集R;(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合;(3)如果f(x)是偶次根式,那么函数的定义域是使根号内的式子不小于零的实数的集合;(4)如果f(x)是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合(即使每个部分有意义的实数的集合的交集);(5)如果f(x)是由实际问题列出的,那么函数的定义域是使解析式本身有意义且符合实际意义的实数的集合.
10、形成性检测知识点编 号学习目标检测题 的内 容1.2.1-21.2.1-3学生对函数的理解是否透彻学生对函数三要素能否把握到位1、下列关系中,y不是x函数的是( )Ay=-By=Cy=x2D|y|=2、求下列函数的定义域。(1)f(x) (2)f(x) (3)f(x)3、求下列函数的值域(1)y12x (xR)(2)yx1 x2,1,0,1,2(3)yx24x3 (3x1)教学反思函数知识在教学中是一大难点。这主要是因为概念的抽象性,学生理解起来不容易,接受起来更难,所以在教学中忌照本宣科,要注意对知识进行重组。多想学生讲解习题,借助生活中的实际案例来向学生们展示函数的抽象概念,努力去提示函数概念的本质,是学生们真正理解它,学习它,觉得它有用,而乐于学习它。 课堂气氛较高,但学生们的参与度不大,学生们能够勇于思考,但应用知识进行创新的能力依旧不强,因而以后的教学中进一步加强学生创新思维的引导!学生普遍都能够理解函数的抽象概念,可对简单函数的三要素进行判断,也可用一些简单函数模型来解决实际生活中的问题,基本完成了教学目标。