收藏 分销(赏)

新苏科版数学八年级上册知识点.doc

上传人:a199****6536 文档编号:1369131 上传时间:2024-04-24 格式:DOC 页数:4 大小:41KB 下载积分:5 金币
下载 相关 举报
新苏科版数学八年级上册知识点.doc_第1页
第1页 / 共4页
新苏科版数学八年级上册知识点.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
苏科版数学八年级上册知识点 第一章 全等三角形 能够完全重合的两个图形叫全等形。全等三角形的性质: 1、全等三角形的对应边相等 2、全等三角形的对应角相等 两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS” 两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”。 两角和其中一角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS” 三边对应相等的三角形全等,简写为“边边边”或“SSS” 斜边、直角边公理 斜边和一直角边对应相等的两个直角三角形全等(可以简写成“斜边、直角边公理”或“HL”) 第二章 轴对称 把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合, 那么这两个图形关于这条直线对称,也称这两个图形成轴对称, 这条直线叫对称轴,两个图形中对应点叫做对称点 轴对称图形 把一个图形沿某条直线折叠,如果直线两旁的部分能够完全重合, 那么成这个图形是轴对称图形,这条直线式对称轴 垂直平分线 垂直并且平分一条线段的直线,叫做这条线段的垂直平分线 轴对称性质: 1、 成轴对称的两个图形全等 2、 如歌两个图形成轴对称,那么对称轴是对应点连线的垂直平分线 A B C D H E F G 3、 成轴对称的两个图形的任何对应部分成轴对称 4、 成轴对称的两条线段平行或所在直线的交点在对称轴上 线段的对称性: 1、 线段是轴对称图形,线段的垂直平分线是对称轴 2、 线段的垂直平分线上的点到线段两端距离相等 3、 到线段两端距离相等的点在垂直平分线上 角的对称性: 1、 角是轴对称图形,角平分线所在的直线是对称轴 2、 角平分线上的点到角的两边距离相等 3、 到角的两边距离相等的点在角平分线上 等腰三角形的性质: 1、 等腰三角形是轴对称图形,顶角平分线所在直线是对称轴 2、 等边对等角 3、 三线合一 等腰三角形判定: 1、 两边相等的三角形是等边三角形 2、 等边对等角 直角三角形斜边上中线等于斜边一半 等边三角形判定及性质: 1、 三条边相等的三角形是等边三角形 2、 等边三角形是轴对称图形,有3条对称轴 3、 等边三角形每个角都等于60° (补充) 等腰梯形:两腰相等的梯形是等腰梯形 等腰梯形性质: 1、 等腰梯形是轴对称图形,过两底中点的直线是对称轴 2、 等腰梯形在同一底上的两个角相等 3、 等腰梯形对角线相等 等腰梯形判定: 1.、两腰相等的梯形是等腰梯形 2、在同一底上两个角相等的梯形是等腰梯形 第三章 勾股定理 直角三角形两直角边的平方和等于斜边的平方 a²+b²=c² 勾股定理逆定理:如果一个三角形三边a、b、c满足a²+b²=c²,那么这个三角形是直角三角形 勾股数:满足a²+b²=c²的三个正整数a、b、c称为勾股数 第四章 实数 平方根:如果一个数的平方等于a,那么这个数叫做a的平方根,也称二次方根 如果x²=a,那么x叫做a的平方根 平方根的性质: 1、一个正数有两个平方根,它们互为相反数 2、0只有一个平方根,是0 3、负数没有平方根 算术平方根:正数a的正的平方根叫a的算术平方根 0的算术平方根是0 开平方:求一个数a的平方根的运算,叫做开平方 立方根:如果一个数的立方等于a,那么这个数叫做a的立方根,也称三次方根 如果x³=a,那么a是x的立方根 立方根的性质: 1、 正数的立方根是正数 2、 负数的立方根是负数 3、 0的立方根是0 开立方:求一个数的立方根的运算,叫做开立方 实数包括:1.有理数:有限小数或无限循环小数 2.无理数:无限不循环小数 实数分为: 正实数 0 负实数 第五章 平面直角坐标系 平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,水平方向的数轴称为x轴或横轴,竖直方向的数轴称为y轴或纵轴,它们统称坐标轴,公共原点O称为坐标原点 y 第二象限 第一象限 (-,+) (+,+) x 第三象限 O 第四象限 (-,-) (+,-) x轴上点的纵坐标为0;y轴上点的横坐标为0 第六章 一次函数 在某一变化过程中,数值保持不变的量叫做常量,可取代数值的量叫变量 函数:如果在一个变化过程中有两个变量x和y,并且相对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数,x是自变量,y是应变量 一次函数:如果两个变量x与y之间的函数关系可以表示为y=kx+b(k、b为常数且k≠0)的形式,那么称y是x的一次函数,当b=0时,y叫做x的正比例函数 一次函数y=kx+b(k≠0)的性质: 1、 当k>0时,y随x的增大而增大,经过一、三象限 2、 当k<0时,y随x的增大而减小,经过二、四象限 3、 当b>0时,直线与y轴交与正半轴 4、 当b<0时,直线与y轴交于负半轴 5、 当b= 0时,直线经过坐标原点 一次函数与二元一次方程的关系:一般地,一次函数y=kx+b图象上任意一点的坐标都是二元一次方程kx-y+b=0的解;一二元一次方程kx-y+b=0的解为坐标的点都在一次函数y=kx+b的图象上 利用图象法解二元一次方程组的解:一般地,如果两个一次函数的图象有一个交点,那么交点的坐标就是相应的二元一次方程组的解
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服