收藏 分销(赏)

高二数学直线和圆的方程综合测试题.doc

上传人:精**** 文档编号:1365729 上传时间:2024-04-24 格式:DOC 页数:6 大小:499KB
下载 相关 举报
高二数学直线和圆的方程综合测试题.doc_第1页
第1页 / 共6页
高二数学直线和圆的方程综合测试题.doc_第2页
第2页 / 共6页
高二数学直线和圆的方程综合测试题.doc_第3页
第3页 / 共6页
高二数学直线和圆的方程综合测试题.doc_第4页
第4页 / 共6页
高二数学直线和圆的方程综合测试题.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、 高二数学直线和圆的方程综合测试题 一、 选择题:1 如果直线将圆:平分,且不通过第四象限,那么的斜率取值范围是( )A B C D2.直线的倾斜角是( ) A. B. C. D. 3. 若直线,与互相垂直,则的值为( )A B1 C0或 D1或4. 过点的直线中被圆截得的弦长最大的直线方程是( )A. B. C. D. 5.过点且方向向量为的直线方程为( )A. B. C. D. 6.圆的圆心到直线的距离是( ) A. B. C.1 D. 7.圆关于直线对称的圆的方程为:( ) A. B. C. D. 8.过点且与两坐标轴都相切的圆的方程为( ) A BC或D或9. 直线与圆相交于两点,若,

2、则的取值范围是( )ABCD10. 下列命题中,正确的是( ) A方程表示的是斜率为1,在轴上的截距为2的直线;B到轴距离为5的点的轨迹方程是;C已知三个顶点,则 高的方程是; D曲线经过原点的充要条件是.11.已知圆,则且是圆与轴相切于坐标原点的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.若直线 与曲线 只有一个公共点,则实数的取值范围是( )A. B.或C. D. 或二.填空题:13.已知直线被圆 截得的弦长为8,则的值为:_14.过点,且与圆相切的直线方程为:_;15. 若满足约束条件:,则的最大值为_.16.已知实数满足,则的取值范围是:_.

3、三.解答题:17.求与轴切于点,并且在轴上截得弦长为10的圆的方程.18.已知一个圆C和轴相切,圆心在直线上,且在直线上截得的弦长为,求圆C的方程.19.已知的顶点A是定点,边在定直线上滑动, 边上的高为3,求的外心的轨迹方程.20.求满足下列条件的曲线方程: (1) 曲线,沿向量平移所得的曲线为,求的方程; (2) 曲线沿向量平移所得的曲线为,求的方程;21.已知圆和直线相交于两点,O为原点,且,求实数的取值.22.已知圆和直线 (1)求证:不论取什么值,直线和圆总相交; (2)求取何值时,圆被直线截得的弦最短,并求最短弦的长.高二数学直线和圆的方程综合测试题参考答案一. 选择题: ADDA

4、B ABCBD AD二. 填空题: 13. 14. 15. 39 16. 三. 解答题:17.答案:.18.解:圆心在直线上,设圆心C的坐标为 圆C与轴相切, 圆的半径为 设圆心到的距离为,则又圆C被直线上截得的弦长为,由圆的几何性质得:,解得圆心为或,圆C的方程为:oxy19.解:因为A为定点, 为定直线,所以以为轴,过A且垂直于的直线为轴,建立直角坐标系(如图),则,设,过作轴,垂足为,则且N平分,又因为, 是的外心,化简得, 的轨迹方程为: 20解:(1)设点为曲线上的任意一点,点是平移前在曲线上与之对应的点,则有, 又点在曲线上,从而,化简得, 为所求.(2) 设点为曲线上的任意一点,点是平移前在曲线上与之对应的点,则有, 又点在曲线上,从而,化简得, 为所求.21. 解: 设点的坐标分别为. 一方面,由,得,即 从而, 另一方面, 是方程组,的实数解, 即是方程 的两个实数根, , 又在直线, 将式代入,得 又将,式代入,解得,代入方程,检验成立。 22.解:(1)证明:由直线的方程可得,则直线恒通过点,把代入圆C的方程,得,所以点 在圆的内部,又因为直线恒过点, 所以直线与圆C总相交.(2)设圆心到直线的距离为,则 又设弦长为,则,即.当时, 所以圆被直线截得最短的弦长为4.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服