收藏 分销(赏)

BP神经网络matlab实例简单而经典.doc

上传人:w****g 文档编号:1362562 上传时间:2024-04-24 格式:DOC 页数:7 大小:146.05KB
下载 相关 举报
BP神经网络matlab实例简单而经典.doc_第1页
第1页 / 共7页
BP神经网络matlab实例简单而经典.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述
p=p1';t=t1'; [pn,minp,maxp,tn,mint,maxt]=premnmx(p,t); %原始数据归一化 net=newff(minmax(pn),[5,1],{'tansig','purelin'},'traingdx'); %设置网络,建立相应的BP网络 net.trainParam.show=2000; % 训练网络 net.trainParam.lr=0.01; net.trainParam.epochs=100000; net.trainParam.goal=1e-5; [net,tr]=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络 pnew=pnew1'; pnewn=tramnmx(pnew,minp,maxp); anewn=sim(net,pnewn); %对BP网络进行仿真 anew=postmnmx(anewn,mint,maxt); %还原数据 y=anew'; 1、BP网络构建 (1)生成BP网络 :由维的输入样本最小最大值构成的维矩阵。 :各层的神经元个数。 :各层的神经元传递函数。 :训练用函数的名称。 (2)网络训练 (3)网络仿真 {'tansig','purelin'},'trainrp' BP网络的训练函数 训练方法 训练函数 梯度下降法 traingd 有动量的梯度下降法 traingdm 自适应lr梯度下降法 traingda 自适应lr动量梯度下降法 traingdx 弹性梯度下降法 trainrp Fletcher-Reeves共轭梯度法 traincgf Ploak-Ribiere共轭梯度法 traincgp Powell-Beale共轭梯度法 traincgb 量化共轭梯度法 trainscg 拟牛顿算法 trainbfg 一步正割算法 trainoss Levenberg-Marquardt trainlm BP网络训练参数 训练参数 参数介绍 训练函数 net.trainParam.epochs 最大训练次数(缺省为10) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.goal 训练要求精度(缺省为0) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.lr 学习率(缺省为0.01) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.max_fail 最大失败次数(缺省为5) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.min_grad 最小梯度要求(缺省为1e-10) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.show 显示训练迭代过程(NaN表示不显示,缺省为25) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.time 最大训练时间(缺省为inf) traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlm net.trainParam.mc 动量因子(缺省0.9) traingdm、traingdx net.trainParam.lr_inc 学习率lr增长比(缺省为1.05) traingda、traingdx net.trainParam.lr_dec 学习率lr下降比(缺省为0.7) traingda、traingdx net.trainParam.max_perf_inc 表现函数增加最大比(缺省为1.04) traingda、traingdx net.trainParam.delt_inc 权值变化增加量(缺省为1.2) trainrp net.trainParam.delt_dec 权值变化减小量(缺省为0.5) trainrp net.trainParam.delt0 初始权值变化(缺省为0.07) trainrp net.trainParam.deltamax 权值变化最大值(缺省为50.0) trainrp net.trainParam.searchFcn 一维线性搜索方法(缺省为srchcha) traincgf、traincgp、traincgb、trainbfg、trainoss net.trainParam.sigma 因为二次求导对权值调整的影响参数(缺省值5.0e-5) trainscg net.trainParam.lambda Hessian矩阵不确定性调节参数(缺省为5.0e-7) trainscg net.trainParam.men_reduc 控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1) trainlm net.trainParam.mu 的初始值(缺省为0.001) trainlm net.trainParam.mu_dec 的减小率(缺省为0.1) trainlm net.trainParam.mu_inc 的增长率(缺省为10) trainlm net.trainParam.mu_max 的最大值(缺省为1e10) trainlm 2、BP网络举例 举例1、 %traingd clear; clc; P=[-1 -1 2 2 4;0 5 0 5 7]; T=[-1 -1 1 1 -1]; %利用minmax函数求输入样本范围 net = newff(minmax(P),[5,1],{'tansig','purelin'},'trainrp'); net.trainParam.show=50;% net.trainParam.lr=0.05; net.trainParam.epochs=300; net.trainParam.goal=1e-5; [net,tr]=train(net,P,T); net.iw{1,1}%隐层权值 net.b{1}%隐层阈值 net.lw{2,1}%输出层权值 net.b{2}%输出层阈值 sim(net,P) 举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。 样本数据: 输入X 输出D 输入X 输出D 输入X 输出D -1.0000 -0.9602 -0.3000 0.1336 0.4000 0.3072 -0.9000 -0.5770 -0.2000 -0.2013 0.5000 0.3960 -0.8000 -0.0729 -0.1000 -0.4344 0.6000 0.3449 -0.7000 0.3771 0 -0.5000 0.7000 0.1816 -0.6000 0.6405 0.1000 -0.3930 0.8000 -0.3120 -0.5000 0.6600 0.2000 -0.1647 0.9000 -0.2189 -0.4000 0.4609 0.3000 -0.0988 1.0000 -0.3201 解: 看到期望输出的范围是,所以利用双极性Sigmoid函数作为转移函数。 程序如下: clear; clc; X=-1:0.1:1; D=[-0.9602 -0.5770 -0.0729 0.3771 0.6405 0.6600 0.4609... 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 -.0988... 0.3072 0.3960 0.3449 0.1816 -0.312 -0.2189 -0.3201]; figure; plot(X,D,'*'); %绘制原始数据分布图(附录:1-1) net = newff([-1 1],[5 1],{'tansig','tansig'}); net.trainParam.epochs = 100; %训练的最大次数 net.trainParam.goal = 0.005; %全局最小误差 net = train(net,X,D); O = sim(net,X); figure; plot(X,D,'*',X,O); %绘制训练后得到的结果和误差曲线(附录:1-2、1-3) V = net.iw{1,1}%输入层到中间层权值 theta1 = net.b{1}%中间层各神经元阈值 W = net.lw{2,1}%中间层到输出层权值 theta2 = net.b{2}%输出层各神经元阈值 所得结果如下: 输入层到中间层的权值: 中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值: 举例3、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。 样本数据: 输入X 输出D 输入X 输出D 输入X 输出D 0 0 4 4 8 2 1 1 5 3 9 3 2 2 6 2 10 4 3 3 7 1 解: 看到期望输出的范围超出,所以输出层神经元利用线性函数作为转移函数。 程序如下: clear; clc; X = [0 1 2 3 4 5 6 7 8 9 10]; D = [0 1 2 3 4 3 2 1 2 3 4]; figure; plot(X,D,'*'); %绘制原始数据分布图 net = newff([0 10],[5 1],{'tansig','purelin'}) net.trainParam.epochs = 100; net.trainParam.goal=0.005; net=train(net,X,D); O=sim(net,X); figure; plot(X,D,'*',X,O); %绘制训练后得到的结果和误差曲线(附录:2-2、2-3) V = net.iw{1,1}%输入层到中间层权值 theta1 = net.b{1}%中间层各神经元阈值 W = net.lw{2,1}%中间层到输出层权值 theta2 = net.b{2}%输出层各神经元阈值 所得结果如下: 输入层到中间层的权值: 中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值: 问题:以下是上证指数2009年2月2日到3月27日的收盘价格,构建一个三层BP神经网络,利用该组信号的6个过去值预测信号的将来值。 日期 价格 日期 价格 2009/02/02 2011.682 2009/03/02 2093.452 2009/02/03 2060.812 2009/03/03 2071.432 2009/02/04 2107.751 2009/03/04 2198.112 2009/02/05 2098.021 2009/03/05 2221.082 2009/02/06 2181.241 2009/03/06 2193.012 2009/02/09 2224.711 2009/03/09 2118.752 2009/02/10 2265.161 2009/03/10 2158.572 2009/02/11 2260.822 2009/03/11 2139.021 2009/02/12 2248.092 2009/03/12 2133.881 2009/02/13 2320.792 2009/03/13 2128.851 2009/02/16 2389.392 2009/03/16 2153.291 2009/02/17 2319.442 2009/03/17 2218.331 2009/02/18 2209.862 2009/03/18 2223.731 2009/02/19 2227.132 2009/03/19 2265.761 2009/02/20 2261.482 2009/03/20 2281.091 2009/02/23 2305.782 2009/03/23 2325.481 2009/02/24 2200.652 2009/03/24 2338.421 2009/02/25 2206.572 2009/03/25 2291.551 2009/02/26 2121.252 2009/03/26 2361.701 2009/02/27 2082.852 2009/03/27 2374.44 load data3_1.txt; [m,n]=size( data3_1); tsx = data3_1(1:m-1,1); tsx=tsx'; ts = data3_1(2:m,1); ts=ts'; [TSX,TSXps]=mapminmax(tsx,1,2); [TS,TSps]=mapminmax(ts,1,2); TSX=TSX'; figure; plot(ts,'LineWidth',2); title('到杭旅游总人数(1999.01.01-2009.12.31)','FontSize',12); xlabel('统计年份(1990.12.19-2009.08.19)','FontSize',12); ylabel('归一化后的总游客数/万人','FontSize',12); grid on; % 生成BP网络、利用minmax函数求输入样本范围 net_1=newff(minmax(TS),[10,1],{'tansig','purelin'},'traincgf') % 设置训练参数 net_1.trainParam.show = 50; %显示训练迭代过程(NaN表示不显示,缺省25) net_1.trainParam.lr = 0.025; %学习率(缺省0.01) net_1.trainParam.mc = 0.9; %动量因子(缺省0.9) net_1.trainParam.epochs = 10000; %最大训练次数 net_1.trainParam.goal = 0.001; %训练要求精度 inputWeights=net_1.IW{1,1} %输入层权值 inputbias=net_1.b{1} %输入层阈值 layerWeights=net_1.LW{2,1} %输出层权值 layerbias=net_1.b{2} %输出层阈值 TS',TSX % 网络训练 [net_1,tr]=train(net_1,TS,TSX);
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 通信科技 > 网络/通信

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服