ImageVerifierCode 换一换
格式:DOC , 页数:7 ,大小:146.05KB ,
资源ID:1362562      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/1362562.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【w****g】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【w****g】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(BP神经网络matlab实例简单而经典.doc)为本站上传会员【w****g】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

BP神经网络matlab实例简单而经典.doc

1、p=p1;t=t1; pn,minp,maxp,tn,mint,maxt=premnmx(p,t); %原始数据归一化net=newff(minmax(pn),5,1,tansig,purelin,traingdx); %设置网络,建立相应的BP网络net.trainParam.show=2000; % 训练网络net.trainParam.lr=0.01;net.trainParam.epochs=100000;net.trainParam.goal=1e-5;net,tr=train(net ,pn,tn); %调用TRAINGDM算法训练BP网络pnew=pnew1; pnewn=tra

2、mnmx(pnew,minp,maxp);anewn=sim(net,pnewn); %对BP网络进行仿真anew=postmnmx(anewn,mint,maxt); %还原数据y=anew;1、BP网络构建(1)生成BP网络:由维的输入样本最小最大值构成的维矩阵。:各层的神经元个数。:各层的神经元传递函数。:训练用函数的名称。(2)网络训练(3)网络仿真tansig,purelin,trainrpBP网络的训练函数 训练方法训练函数梯度下降法traingd有动量的梯度下降法traingdm自适应lr梯度下降法traingda自适应lr动量梯度下降法traingdx弹性梯度下降法trainr

3、pFletcher-Reeves共轭梯度法traincgfPloak-Ribiere共轭梯度法traincgpPowell-Beale共轭梯度法traincgb量化共轭梯度法trainscg拟牛顿算法trainbfg一步正割算法trainossLevenberg-MarquardttrainlmBP网络训练参数训练参数参数介绍训练函数net.trainParam.epochs最大训练次数(缺省为10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、t

4、rainlmnet.trainParam.goal训练要求精度(缺省为0)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.lr学习率(缺省为0.01)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.max_fail最大失

5、败次数(缺省为5)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.min_grad最小梯度要求(缺省为1e-10)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.show显示训练迭代过程(NaN表示不显示,缺省为25)t

6、raingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.time最大训练时间(缺省为inf)traingd、traingdm、traingda、traingdx、trainrp、traincgf、traincgp、traincgb、trainscg、trainbfg、trainoss、trainlmnet.trainParam.mc动量因子(缺省0.9)traingdm、traingdxnet.trainParam.

7、lr_inc学习率lr增长比(缺省为1.05)traingda、traingdxnet.trainParam.lr_dec学习率lr下降比(缺省为0.7)traingda、traingdxnet.trainParam.max_perf_inc表现函数增加最大比(缺省为1.04)traingda、traingdxnet.trainParam.delt_inc权值变化增加量(缺省为1.2)trainrpnet.trainParam.delt_dec权值变化减小量(缺省为0.5)trainrpnet.trainParam.delt0初始权值变化(缺省为0.07)trainrpnet.trainPar

8、am.deltamax权值变化最大值(缺省为50.0)trainrpnet.trainParam.searchFcn一维线性搜索方法(缺省为srchcha)traincgf、traincgp、traincgb、trainbfg、trainossnet.trainParam.sigma因为二次求导对权值调整的影响参数(缺省值5.0e-5)trainscgnet.trainParam.lambdaHessian矩阵不确定性调节参数(缺省为5.0e-7)trainscgnet.trainParam.men_reduc控制计算机内存/速度的参量,内存较大设为1,否则设为2(缺省为1)trainlmne

9、t.trainParam.mu的初始值(缺省为0.001)trainlmnet.trainParam.mu_dec的减小率(缺省为0.1)trainlmnet.trainParam.mu_inc的增长率(缺省为10)trainlmnet.trainParam.mu_max的最大值(缺省为1e10)trainlm2、BP网络举例举例1、%traingdclear;clc;P=-1 -1 2 2 4;0 5 0 5 7;T=-1 -1 1 1 -1;%利用minmax函数求输入样本范围net = newff(minmax(P),5,1,tansig,purelin,trainrp);net.tra

10、inParam.show=50;%net.trainParam.lr=0.05;net.trainParam.epochs=300;net.trainParam.goal=1e-5;net,tr=train(net,P,T);net.iw1,1%隐层权值net.b1%隐层阈值net.lw2,1%输出层权值net.b2%输出层阈值sim(net,P)举例2、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D-1.0000-0.9602-0.30000.13360.40000.3072-0.9000-0.5770-0.2000-

11、0.20130.50000.3960-0.8000-0.0729-0.1000-0.43440.60000.3449-0.70000.37710-0.50000.70000.1816-0.60000.64050.1000-0.39300.8000-0.3120-0.50000.66000.2000-0.16470.9000-0.2189-0.40000.46090.3000-0.09881.0000-0.3201解:看到期望输出的范围是,所以利用双极性Sigmoid函数作为转移函数。程序如下:clear;clc;X=-1:0.1:1;D=-0.9602 -0.5770 -0.0729 0.37

12、71 0.6405 0.6600 0.4609. 0.1336 -0.2013 -0.4344 -0.5000 -0.3930 -0.1647 -.0988. 0.3072 0.3960 0.3449 0.1816 -0.312 -0.2189 -0.3201;figure;plot(X,D,*); %绘制原始数据分布图(附录:1-1)net = newff(-1 1,5 1,tansig,tansig);net.trainParam.epochs = 100; %训练的最大次数net.trainParam.goal = 0.005; %全局最小误差net = train(net,X,D);

13、O = sim(net,X); figure; plot(X,D,*,X,O); %绘制训练后得到的结果和误差曲线(附录:1-2、1-3)V = net.iw1,1%输入层到中间层权值theta1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2 = net.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值: 中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:举例3、利用三层BP神经网络来完成非线性函数的逼近任务,其中隐层神经元个数为五个。样本数据:输入X输出D输入X输出D输入X输出D00448211539322621

14、043371解:看到期望输出的范围超出,所以输出层神经元利用线性函数作为转移函数。程序如下:clear; clc;X = 0 1 2 3 4 5 6 7 8 9 10;D = 0 1 2 3 4 3 2 1 2 3 4;figure;plot(X,D,*); %绘制原始数据分布图net = newff(0 10,5 1,tansig,purelin)net.trainParam.epochs = 100;net.trainParam.goal=0.005;net=train(net,X,D);O=sim(net,X);figure;plot(X,D,*,X,O); %绘制训练后得到的结果和误差

15、曲线(附录:2-2、2-3)V = net.iw1,1%输入层到中间层权值theta1 = net.b1%中间层各神经元阈值W = net.lw2,1%中间层到输出层权值theta2 = net.b2%输出层各神经元阈值所得结果如下:输入层到中间层的权值:中间层各神经元的阈值: 中间层到输出层的权值: 输出层各神经元的阈值:问题:以下是上证指数2009年2月2日到3月27日的收盘价格,构建一个三层BP神经网络,利用该组信号的6个过去值预测信号的将来值。日期价格日期价格2009/02/022011.6822009/03/022093.4522009/02/032060.8122009/03/03

16、2071.4322009/02/042107.7512009/03/042198.1122009/02/052098.0212009/03/052221.0822009/02/062181.2412009/03/062193.0122009/02/092224.7112009/03/092118.7522009/02/102265.1612009/03/102158.5722009/02/112260.8222009/03/112139.0212009/02/122248.0922009/03/122133.8812009/02/132320.7922009/03/132128.8512009

17、/02/162389.3922009/03/162153.2912009/02/172319.4422009/03/172218.3312009/02/182209.8622009/03/182223.7312009/02/192227.1322009/03/192265.7612009/02/202261.4822009/03/202281.0912009/02/232305.7822009/03/232325.4812009/02/242200.6522009/03/242338.4212009/02/252206.5722009/03/252291.5512009/02/262121.2

18、522009/03/262361.7012009/02/272082.8522009/03/272374.44load data3_1.txt;m,n=size( data3_1); tsx = data3_1(1:m-1,1);tsx=tsx;ts = data3_1(2:m,1);ts=ts;TSX,TSXps=mapminmax(tsx,1,2);TS,TSps=mapminmax(ts,1,2);TSX=TSX; figure;plot(ts,LineWidth,2);title(到杭旅游总人数(1999.01.01-2009.12.31),FontSize,12);xlabel(统计

19、年份(1990.12.19-2009.08.19),FontSize,12);ylabel(归一化后的总游客数/万人,FontSize,12);grid on; % 生成BP网络、利用minmax函数求输入样本范围net_1=newff(minmax(TS),10,1,tansig,purelin,traincgf) % 设置训练参数net_1.trainParam.show = 50; %显示训练迭代过程(NaN表示不显示,缺省25)net_1.trainParam.lr = 0.025; %学习率(缺省0.01)net_1.trainParam.mc = 0.9; %动量因子(缺省0.9)net_1.trainParam.epochs = 10000; %最大训练次数net_1.trainParam.goal = 0.001; %训练要求精度 inputWeights=net_1.IW1,1 %输入层权值inputbias=net_1.b1 %输入层阈值 layerWeights=net_1.LW2,1 %输出层权值layerbias=net_1.b2 %输出层阈值 TS,TSX% 网络训练 net_1,tr=train(net_1,TS,TSX);

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服