资源描述
备战中考数学 平行四边形 培优练习(含答案)含答案
一、平行四边形
1.(1)、动手操作:
如图①:将矩形纸片ABCD折叠,使点D与点B重叠,点C落在点处,折痕为EF,若∠ABE=20°,那么度数为 .
(2)、观测发现:
小明将三角形纸片ABC(AB>AC)沿过点A直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重叠,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请阐明理由.
(3)、实践与运用:
将矩形纸片ABCD按如下环节操作:将纸片对折得折痕EF,折痕与AD边交于点E,与BC边交于点F;将矩形ABFE与矩形EFCD分别沿折痕MN和PQ折叠,使点A、点D都与点F重叠,展开纸片,此时恰好有MP=MN=PQ(如图④),求∠MNF大小.
【答案】(1)125°;(2)同意;(3)60°
【解析】
试题分析:(1)根据直角三角形两个锐角互余求得∠AEB=70°,根据折叠重叠角相等,得∠BEF=∠DEF=55°,根据平行线性质得到∠EFC=125°,再根据折叠性质得到∠EFC′=∠EFC=125°;
(2)根据第一次折叠,得∠BAD=∠CAD;根据第二次折叠,得EF垂直平分AD,根据等角余角相等,得∠AEG=∠AFG,则△AEF是等腰三角形;
(3)由题意得出:∠NMF=∠AMN=∠MNF,MF=NF,由对称性可知,MF=PF,进而得出△MNF≌△MPF,得出3∠MNF=180°求出即可.
试题解析:(1)、∵在直角三角形ABE中,∠ABE=20°,
∴∠AEB=70°,
∴∠BED=110°,
根据折叠重叠角相等,得∠BEF=∠DEF=55°.
∵AD∥BC,
∴∠EFC=125°,
再根据折叠性质得到∠EFC′=∠EFC=125°.;
(2)、同意,如图,设AD与EF交于点G
由折叠知,AD平分∠BAC,因此∠BAD=∠CAD.
由折叠知,∠AGE=∠DGE=90°,
因此∠AGE=∠AGF=90°,
因此∠AEF=∠AFE.
因此AE=AF,
即△AEF为等腰三角形.
(3)、由题意得出:∠NMF=∠AMN=∠MNF,
∴MF=NF,
由折叠可知,MF=PF,
∴NF=PF,
而由题意得出:MP=MN,
又∵MF=MF,
∴△MNF≌△MPF,
∴∠PMF=∠NMF,而∠PMF+∠NMF+∠MNF=180°,
即3∠MNF=180°,
∴∠MNF=60°.
考点:1.折叠性质;2.等边三角形性质;3.全等三角形判定和性质;4.等腰三角形判定
2.问题发现:
()如图①,点为平行四边形内一点,请过点画一条直线,使其同步平分平行四边形面积和周长.
问题探究:
()如图②,在平面直角坐标系中,矩形边、分别在轴、轴正半轴上,点 坐标为.已知点为矩形外一点,请过点画一条同步平分矩形面积和周长直线,阐明理由并求出直线,阐明理由并求出直线被矩形截得线段长度.
问题处理:
()如图③,在平面直角坐标系中,矩形边、分别在轴、轴正半轴上,轴,轴,且,,点为五边形内一点.请问:与否存在过点直线,分别与边与交于点、,且同步平分五边形面积和周长?若存在,祈求出点和点坐标:若不存在,请阐明理由.
【答案】(1)作图见解析;(2),;(3),.
【解析】
试题分析:(1)连接AC、BD交于点O,作直线PO,直线PO将平行四边形ABCD面积和周长分别相等两部分.
(2)连接AC,BD交于点,过、P点直线将矩形ABCD面积和周长分为分别相等两部分.
(3)存在,直线平分五边形面积、周长.
试题解析:()作图如下:
()∵,,
∴设,
,,
∴,
交轴于,
交于,
.
()存在,直线平分五边形面积、周长.
∵在直线上,
∴连交、于点、,
设,,
,,
∴直线,
联立,得,
∴,.
3.已知:在菱形ABCD中,E,F是BD上两点,且AE∥CF.
求证:四边形AECF是菱形.
【答案】见解析
【解析】
【分析】
由菱形性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形判定和菱形判定可得四边形AECF是菱形.
【详解】
证明:∵四边形ABCD是菱形
∴AB∥CD,AB=CD,∠ADF=∠CDF,
∵AB=CD,∠ADF=∠CDF,DF=DF
∴△ADF≌△CDF(SAS)
∴AF=CF,
∵AB∥CD,AE∥CF
∴∠ABE=∠CDF,∠AEF=∠CFE
∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD
∴△ABE≌△CDF(AAS)
∴AE=CF,且AE∥CF
∴四边形AECF是平行四边形
又∵AF=CF,
∴四边形AECF是菱形
【点睛】
本题重要考察菱形判定定理,首先要判定其为平行四边形,这是菱形判定基本判定.
4.如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,点E为CD中点,射线BE交AD延长线于点F,连接CF.
(1)求证:四边形BCFD是菱形;
(2)若AD=1,BC=2,求BF长.
【答案】(1)证明见解析(2)2
【解析】
(1)∵AF∥BC,∴∠DCB=∠CDF,∠FBC=∠BFD,
∵点E为CD中点,∴DE=EC,
在△BCE与△FDE中,,
∴△BCE≌△FDE,∴DF=BC,
又∵DF∥BC,∴四边形BCDF为平行四边形,
∵BD=BC,∴四边形BCFD是菱形;
(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,
在Rt△BAD中,AB=,
∵AF=AD+DF=1+2=3,在Rt△BAF中,BF==2.
5.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.
(1)求边EF长;
(2)将正方形EFGH沿射线FB方向以每秒个单位速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1一直与y轴垂直,设平移时间为t秒(t>0).
①当点F1移动到点B时,求t值;
②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE重叠部分面积.
【答案】(1)EF=15;(2)①10;②120;
【解析】
【分析】
(1)根据已知点E(30,0),点D(0,40),求出直线DE直线解析式y=-x+40,可求出P点坐标,进而求出F点坐标即可;
(2)①易求B(0,5),当点F1移动到点B时,t=10÷=10;
②F点移动到F'距离是t,F垂直x轴方向移动距离是t,当点H运动到直线DE上时,在Rt△F'NF中,=,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,,t=4,S=×(12+)×11=;当点G运动到直线DE上时,在Rt△F'PK中,=,PK=t-3,F'K=3t-9,在Rt△PKG'中,==,t=7,S=15×(15-7)=120.
【详解】
(1)设直线DE直线解析式y=kx+b,
将点E(30,0),点D(0,40),
∴,
∴,
∴y=﹣x+40,
直线AB与直线DE交点P(21,12),
由题意知F(30,15),
∴EF=15;
(2)①易求B(0,5),
∴BF=10,
∴当点F1移动到点B时,t=10=10;
②当点H运动到直线DE上时,
F点移动到F'距离是t,
在Rt△F'NF中,=,
∴FN=t,F'N=3t,
∵MH'=FN=t,
EM=NG'=15﹣F'N=15﹣3t,
在Rt△DMH'中,
,
∴,
∴t=4,
∴EM=3,MH'=4,
∴S=;
当点G运动到直线DE上时,
F点移动到F'距离是t,
∵PF=3,
∴PF'=t﹣3,
在Rt△F'PK中,
,
∴PK=t﹣3,F'K=3t﹣9,
在Rt△PKG'中,==,
∴t=7,
∴S=15×(15﹣7)=120.
【点睛】
本题考察一次函数图象及性质,正方形性质;掌握待定系数法求函数解析式,运用三角形正切值求边关系,运用勾股定理在直角三角形中建立边之间联络,精确确定阴影部分面积是解题关键.
6.如图1,在△ABC中,AB=AC,AD⊥BC于D,分别延长AC至E,BC至F,且CE=EF,延长FE交AD延长线于G.
(1)求证:AE=EG;
(2)如图2,分别连接BG,BE,若BG=BF,求证:BE=EG;
(3)如图3,取GF中点M,若AB=5,求EM长.
【答案】(1)证明见解析(2)证明见解析(3)
【解析】
【分析】
(1)根据平行线性质和等腰三角形三线合一性质得:∠CAD=∠G,可得AE=EG;
(2)作辅助线,证明△BEF≌△GEC(SAS),可得结论;
(3)如图3,作辅助线,构建平行线,证明四边形DMEN是平行四边形,得EM=DN=AC,计算可得结论.
【详解】
证明:(1)如图1,过E作EH⊥CF于H,
∵AD⊥BC,
∴EH∥AD,
∴∠CEH=∠CAD,∠HEF=∠G,
∵CE=EF,
∴∠CEH=∠HEF,
∴∠CAD=∠G,
∴AE=EG;
(2)如图2,连接GC,
∵AC=BC,AD⊥BC,
∴BD=CD,
∴AG是BC垂直平分线,
∴GC=GB,
∴∠GBF=∠BCG,
∵BG=BF,
∴GC=BE,
∵CE=EF,
∴∠CEF=180°﹣2∠F,
∵BG=BF,
∴∠GBF=180°﹣2∠F,
∴∠GBF=∠CEF,
∴∠CEF=∠BCG,
∵∠BCE=∠CEF+∠F,∠BCE=∠BCG+∠GCE,
∴∠GCE=∠F,
在△BEF和△GCE中,
,
∴△BEF≌△GEC(SAS),
∴BE=EG;
(3)如图3,连接DM,取AC中点N,连接DN,
由(1)得AE=EG,
∴∠GAE=∠AGE,
在Rt△ACD中,N为AC中点,
∴DN=AC=AN,∠DAN=∠ADN,
∴∠ADN=∠AGE,
∴DN∥GF,
在Rt△GDF中,M是FG中点,
∴DM=FG=GM,∠GDM=∠AGE,
∴∠GDM=∠DAN,
∴DM∥AE,
∴四边形DMEN是平行四边形,
∴EM=DN=AC,
∵AC=AB=5,
∴EM=.
【点睛】
本题是三角形综合题,重要考察了全等三角形判定与性质,直角三角形斜边中线性质,等腰三角形性质和判定,平行四边形性质和判定等知识,解题关键是作辅助线,并纯熟掌握全等三角形判定措施,尤其是第三问,辅助线作法是关键.
7.既有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.
(1)求AE、EF位置关系;
(2)求线段B′C长,并求△B′EC面积.
【答案】(1)见解析;(2)S△B′EC=.
【解析】
【分析】
(1)由折线法及点E是BC中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;
(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′长求出,在Rt△BB′C中,根据勾股定理可将B′C值求出.
【详解】
(1)由折线法及点E是BC中点,
∴EB=EB′=EC,∠AEB=∠AEB′,
∴△B'EC是等腰三角形,
又∵EF⊥B′C
∴EF为∠B'EC角平分线,即∠B′EF=∠FEC,
∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,
即AE⊥EF;
(2)连接BB'交AE于点O,由折线法及点E是BC中点,
∴EB=EB′=EC,
∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;
又∵△BB'C三内角之和为180°,
∴∠BB'C=90°;
∵点B′是点B有关直线AE对称点,
∴AE垂直平分BB′;
在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2
将AB=4cm,BE=3cm,AE=5cm,
∴AO= cm,
∴BO==cm,
∴BB′=2BO=cm,
∴在Rt△BB'C中,B′C==cm,
由题意可知四边形OEFB′是矩形,
∴EF=OB′=,
∴S△B′EC=.
【点睛】
考察图形折叠变化及三角形内角和定理勾股定理和矩形性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称性质,折叠前后图形形状和大小不变,只是位置变化.
8.(1)问题发现
如图1,点E. F分别在正方形ABCD边BC、CD上,∠EAF=45°,连接EF、则EF=BE+DF,试阐明理由;
(2)类比引申
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BC、CD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系 时,仍有EF=BE+DF;
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BD、DE、EC满足等量关系,并写出推理过程。
【答案】(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
试题分析:(1)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重叠,证出△AFG≌△AFE,根据全等三角形性质得出EF=FG,即可得出答案;
(2)把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重叠,证出△AFE≌△AFG,根据全等三角形性质得出EF=FG,即可得出答案;
(3)把△ACE旋转到ABF位置,连接DF,证明△AFE≌△AFG(SAS),则EF=FG,∠C=∠ABF=45°,△BDF是直角三角形,根据勾股定理即可作出判断.
试题解析:(1)理由是:如图1,
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重叠,如图1,
∵∠ADC=∠B=90∘,
∴∠FDG=180∘,点F. D. G共线,
则∠DAG=∠BAE,AE=AG,
∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90∘−45∘=45∘=∠EAF,
即∠EAF=∠FAG,
在△EAF和△GAF中,
AF=AF,∠EAF=∠GAF,AE=AG,
∴△AFG≌△AFE(SAS),
∴EF=FG=BE+DF;
(2)∠B+∠D=180∘时,EF=BE+DF;
∵AB=AD,
∴把△ABE绕点A逆时针旋转90∘至△ADG,可使AB与AD重叠,如图2,
∴∠BAE=∠DAG,
∵∠BAD=90∘,∠EAF=45∘,
∴∠BAE+∠DAF=45∘,
∴∠EAF=∠FAG,
∵∠ADC+∠B=180∘,
∴∠FDG=180∘,点F. D. G共线,
在△AFE和△AFG中,
AE=AG,∠FAE=∠FAG,AF=AF,
∴△AFE≌△AFG(SAS),
∴EF=FG,
即:EF=BE+DF,
故答案为:∠B+∠ADC=180∘;
(3)BD2+CE2=DE2.
理由是:把△ACE旋转到ABF位置,连接DF,
则∠FAB=∠CAE.
∵∠BAC=90∘,∠DAE=45∘,
∴∠BAD+∠CAE=45∘,
又∵∠FAB=∠CAE,
∴∠FAD=∠DAE=45∘,
则在△ADF和△ADE中,
AD=AD,∠FAD=∠DAE,AF=AE,
∴△ADF≌△ADE,
∴DF=DE,∠C=∠ABF=45∘,
∴∠BDF=90∘,
∴△BDF是直角三角形,
∴BD2+BF2=DF2,
∴BD2+CE2=DE2.
9.如图,抛物线交x轴正半轴于点A,点B(,a)在抛物线上,点C是抛物线对称轴上一点,连接AB、BC,以AB、BC为邻边作□ABCD,记点C纵坐标为n,
(1)求a值及点A坐标;
(2)当点D恰好落在抛物线上时,求n值;
(3)记CD与抛物线交点为E,连接AE,BE,当△AEB面积为7时,n=___________.(直接写出答案)
【答案】(1), A(3,0);(2)
【解析】
试题解析:(1)把点B坐标代入抛物线解析式中,即可求出a值,令y=0即可求出点A坐标.
(2)求出点D坐标即可求解;
(3)运用△AEB面积为7,列式计算即可得解.
试题解析:(1)当时,
由 ,得(舍去),(1分)
∴A(3,0)
(2)过D作DG⊥轴于G,BH⊥轴于H.
∵CD∥AB,CD=AB
∴,
∴,
∴
(3)
10.(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C一点,以AM为边作等边三角形AMN,连接CN,NC与AB位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN数量关系,并阐明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C一点,以AM为边作正方形AMEF,点N为正方形AMEF中点,连接CN,若BC=10,CN=,试求EF长.
【答案】(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
分析:(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形性质得到,运用等腰三角形性质得到∠BAC=∠MAN,根据相似三角形性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
详解:(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
点睛:本题是四边形综合题目,考察了正方形性质、等边三角形性质、等腰三角形性质、全等三角形性质定理和判定定理、相似三角形性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是处理问题关键.
11.已知:在矩形ABCD中,AB=10,BC=12,四边形EFGH三个顶点E、F、H分别在矩形ABCD边AB、BC、DA上,AE=2.
(1)如图①,当四边形EFGH为正方形时,求△GFC面积;
(2)如图②,当四边形EFGH为菱形,且BF=a时,求△GFC面积(用a表达);
(3)在(2)条件下,△GFC面积能否等于2?请阐明理由.
【答案】(1)10;(2)12-a;(3)不能
【解析】
解:(1)过点G作GM⊥BC于M.在正方形EFGH中,
∠HEF=90°,EH=EF,
∴∠AEH+∠BEF=90°.
∵∠AEH+∠AHE=90°,
∴∠AHE=∠BEF.
又∵∠A=∠B=90°,
∴△AHE≌△BEF.
同理可证△MFG≌△BEF.
∴GM=BF=AE=2.∴FC=BC-BF=10.
∴.
(2)过点G作GM⊥BC交BC延长线于M,连接HF.
∵AD∥BC,∴∠AHF=∠MFH.
∵EH∥FG,∴∠EHF=∠GFH.
∴∠AHE=∠MFG.
又∵∠A=∠GMF=90°,EH=GF,
∴△AHE≌△MFG.∴GM=AE=2.
∴.
(3)△GFC面积不能等于2.
阐明一:∵若S△GFC=2,则12-a=2,∴a=10.
此时,在△BEF中,
.
在△AHE中,
,
∴AH>AD,即点H已经不在边AD上,故不也许有S△GFC=2.
阐明二:△GFC面积不能等于2.∵点H在AD上,
∴菱形边EH最大值为,∴BF最大值为.
又∵函数S△GFC=12-a值伴随a增大而减小,
∴S△GFC最小值为.
又∵,∴△GFC面积不能等于2.
12.如图,在平面直角坐标系xOy中,四边形OABC顶点A在x轴正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO中点,连结DE、EF、FG、GD.
(1)若点C在y轴正半轴上,当点B坐标为(2,4)时,判断四边形DEFG形状,并阐明理由.
(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度取值范围.
(3)若在点C运动过程中,四边形DEFG一直为正方形,当点C从X轴负半轴通过Y轴正半轴,运动至X轴正半轴时,直接写出点B运动途径长.
【答案】(1)正方形(2)(3)2π
【解析】
分析:(1)连接OB,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形.
(2)由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, 故可得结论;
(3)根据题意计算弧长即可.
详解:(1)正方形,如图1,证明连接OB,AC,阐明OB⊥AC,OB=AC,可得四边形DEFG是正方形.
(2)
如图2,由四边形DEFG是菱形,可得OB=AC,当点C在y轴上时,AC=,当点C在x轴上时,AC=6, ∴ ;
(3)2π.
如图3,当四边形DEFG是正方形时,OB⊥AC,且OB=AC,构造△OBE≌△ACO,可得B点在以E(0,4)为圆心,2为半径圆上运动.
因此当C点从x轴负半轴到正半轴运动时,B点运动途径为2 .
图1 图2 图3
点睛:本题重要考察了正方形判定,菱形性质以及弧长计算.灵活运用正方形判定定理和菱形性质运用是解题关键.
13.如图,在菱形ABCD中,AB=6,∠ABC=60°,AH⊥BC于点H.动点E从点B出发,沿线段BC向点C以每秒2个单位长度速度运动.过点E作EF⊥AB,垂足为点F.点E出发后,以EF为边向上作等边三角形EFG,设点E运动时间为t秒,△EFG和△AHC重叠部分面积为S.
(1)CE= (含t代数式表达).
(2)求点G落在线段AC上时t值.
(3)当S>0时,求S与t之间函数关系式.
(4)点P在点E出发同步从点A出发沿A-H-A以每秒2个单位长度速度作往复运动,当点E停止运动时,点P随之停止运动,直接写出点P在△EFG内部时t取值范围.
【答案】(1)6-2t;(2)t=2;(3)当<t≤2时,S=t2+t-3;当2<t≤3时,S=-t2+t-;(4)<t<.
【解析】
试题分析:(1)由菱形性质得出BC=AB=6得出CE=BC-BE=6-2t即可;
(2)由菱形性质和已知条件得出△ABC是等边三角形,得出∠ACB=60°,由等边三角形性质和三角函数得出∠GEF=60°,GE=EF=BE•sin60°=t,证出∠GEC=90°,由三角函数求出CE==t,由BE+CE=BC得出方程,解方程即可;
(3)分两种状况:①当<t≤2时,S=△EFG面积-△NFN面积,即可得出成果;
②当2<t≤3时,由①成果容易得出结论;
(4)由题意得出t=时,点P与H重叠,E与H重叠,得出点P在△EFG内部时,t不等式,解不等式即可.
试题解析:(1)根据题意得:BE=2t,
∵四边形ABCD是菱形,
∴BC=AB=6,
∴CE=BC-BE=6-2t;
(2)点G落在线段AC上时,如图1所示:
∵四边形ABCD是菱形,
∴AB=BC,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴∠ACB=60°,
∵△EFG是等边三角形,
∴∠GEF=60°,GE=EF=BE•sin60°=t,
∵EF⊥AB,
∴∠BEF=90°-60°=30°,
∴∠GEB=90°,
∴∠GEC=90°,
∴CE==t,
∵BE+CE=BC,
∴2t+t=6,
解得:t=2;
(3)分两种状况:①当<t≤2时,如图2所示:
S=△EFG面积-△NFN面积=××(t)2-××(-+2)2=t2+t-3,
即S=t2+t-3;
当2<t≤3时,如图3所示:
S=t2+t-3-(3t-6)2,
即S=-t2+t-;
(4)∵AH=AB•sin60°=6×=3,3÷2=,3÷2=,
∴t=时,点P与H重叠,E与H重叠,
∴点P在△EFG内部时,-<(t-)×2<t-(2t-3)+(2t-3),
解得:<t<;
即点P在△EFG内部时t取值范围为:<t<.
考点:四边形综合题.
14.倡导研究性学习方式,着力教材研究,习题研究,是学生跳出题海,提高学习能力和创新能力有效途径.下面是一案例,请同学们认真阅读、研究,完毕“类比猜想”问题.
习题 如图(1),点E、F分别在正方形ABCD边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,阐明理由.
解答:∵正方形ABCD中,AB=AD,∠BAD=∠ADC=∠B=90°,
∴把△ABE绕点A逆时针旋转90°至△ADE′,点F、D、E′在一条直线上.
∴∠E′AF=90°-45°=45°=∠EAF,又∵AE′=AE,AF=AF
∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.
类比猜想:
(1)请同学们研究:如图(2),在菱形ABCD中,点E、F分别在BC、CD上,当∠BAD=120°,∠EAF=60°时,尚有EF=BE+DF吗?请阐明理由.
(2)在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF吗?请阐明理由.
【答案】证明见解析.
【解析】
试题分析:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转性质得到AE=AE′,∠EAF=∠E′AF,运用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,因此DE′+DF>EF,即由BE+DF>EF;
(2)把△ABE绕点A逆时针旋转∠BAD度数至△ADE′,如图(3),根据旋转性质得到AE′=AE,∠EAF=∠E′AF,然后运用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面条件和结论可归纳出结论.
试题解析:(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.
理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,
∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,
∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,
∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,
∴∠2+∠3=60°,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,
∴DE′+DF>EF
∴BE+DF>EF;
(2)当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF成立.
理由如下:如图(3),
∵AB=AD,
∴把△ABE绕点A逆时针旋转∠BAD度数至△ADE′,如图(3),
∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,
∵∠B+∠D=180°,
∴∠ADE′+∠D=180°,
∴点F、D、E′共线,
∵∠EAF=∠BAD,
∴∠1+∠2=∠BAD,
∴∠2+∠3=∠BAD,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∴EF=DE′+DF=BE+DF;
归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=∠BAD时,EF=BE+DF.
考点:四边形综合题.
15.如图1,在菱形ABCD中,ABC=60°,若点E在AB延长线上,EF∥AD,EF=BE,点P是DE中点,连接FP并延长交AD于点G.
(1)过D作DHAB,垂足为H,若DH=,BE=AB,求DG长;
(2)连接CP,求证:CPFP;
(3)如图2,在菱形ABCD中,ABC=60°,若点E在CB延长线上运动,点F在AB延长线上运动,且BE=BF,连接DE,点P为DE中点,连接FP、CP,那么第(2)问结论成立吗?若成立,求出值;若不成立,请阐明理由.
【答案】(1)1;(2)见解析;(3).
【解析】
试题分析:(1)根据菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60°,则∠DAH=∠ABC=60°,根据DH⊥AB得出∠DHA=90°,根据Rt△ADH正弦值得出AD长度,然后得出BE长度,然后证明△PDG≌△PEF,得出DG=EF,根据EF∥AD,AD∥BC得出EF∥BC,则阐明△BEF为正三角形,从而得出DG长度;(2)连接CG、CF,根据△PDG≌△PEF得出PG=PF,然后证明△CDG≌△CBF,从而得到CG=CF,根据PG=PF得出垂直;(3)过D作EF平行线,交FP延长于点G,连接CG、CF证△PEF≌△PDG,然后证明△CDG≌△CBF,从而得出∠GCE=120°,根据Rt△CPF求出比值.
试题解析:(1)解:∵四边形ABCD为菱形 ∴DA∥BC CD="CB" ∠CDG=∠CBA=60° ∴∠DAH=∠ABC=60°
∵DH⊥AB ∴∠DHA=90° 在Rt△ADH中 sin∠DAH=∴AD=
∴BE=AB=×4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P为DE中点 ∴PD=PE
∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC
∴∠FEB=∠CBA=60° ∵BE=EF ∴△BEF为正三角形 ∴EF=BE=1 ∴DG=EF=1
、证明:连接CG、CF
由(1)知 △PDG≌△PEF ∴PG=PF
在△CDG与△CBF中 易证:∠CDG=∠CBF=60° CD=CB BF=EF=DG ∴△CDG≌△CBF
∴CG=CF ∵PG=PF ∴CP⊥GF
(3)如图:CP⊥GF仍成立
理由如下:过D作EF平行线,交FP延长于点G
连接CG、CF证△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC
∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60° ∴∠CDG=∠ADC+∠GDA=120°
∵∠CBF=180°-∠EBF=120° ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF
∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP
∵∠DCP=180-∠ABC=120° ∴∠DCG+∠GCE=120° ∴∠FCE+∠GCE=120° 即∠GCE=120°
∴∠FCP=∠GCE=60° 在Rt△CPF中 tan∠FCP=tan60°==
考点:三角形全等证明与性质.
展开阅读全文