收藏 分销(赏)

2026届周口市重点中学数学高一第一学期期末联考试题含解析.doc

上传人:zj****8 文档编号:12794586 上传时间:2025-12-08 格式:DOC 页数:14 大小:571KB 下载积分:12.58 金币
下载 相关 举报
2026届周口市重点中学数学高一第一学期期末联考试题含解析.doc_第1页
第1页 / 共14页
2026届周口市重点中学数学高一第一学期期末联考试题含解析.doc_第2页
第2页 / 共14页


点击查看更多>>
资源描述
2026届周口市重点中学数学高一第一学期期末联考试题 注意事项: 1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。 2.答题时请按要求用笔。 3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.已知集合,集合,则 A. B. C. D. 2.已知,且,则 A. B. C. D. 3.已知 为正实数,且,则的最小值为( ) A.4 B.7 C.9 D.11 4.已知点是角α的终边与单位圆的交点,则() A. B. C. D. 5.的值为(  ) A. B. C. D. 6.已知向量且,则x值为(). A.6 B.-6 C.7 D.-7 7.将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是() A. B. C. D. 8.当点在圆上变动时,它与定点的连线的中点的轨迹方程是() A. B. C. D. 9.命题:,,则该命题的否定为() A., B., C., D., 10.,,则p是q的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 二、填空题:本大题共6小题,每小题5分,共30分。 11.设、为平面向量,若存在不全为零的实数λ,μ使得λμ0,则称、线性相关,下面的命题中,、、均为已知平面M上的向量 ①若2,则、线性相关; ②若、为非零向量,且⊥,则、线性相关; ③若、线性相关,、线性相关,则、线性相关; ④向量、线性相关的充要条件是、共线 上述命题中正确的是(写出所有正确命题的编号) 12.已知函数,关于方程有四个不同的实数解,则的取值范围为__________ 13.函数是定义在上周期为2的奇函数,若,则______ 14.已知函数是定义在上的偶函数,且在区间上单调递减,若实数满足,则的取值范围是______ 15.已知,且. (1)求的值; (2)求的值. 16.将函数图象上所有点的横坐标压缩为原来的后,再将图象向左平移个单位长度,得到函数的图象,则的单调递增区间为____________ 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下: 上市时间x天 2 6 20 市场价y元 102 78 120 (1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③; (2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格; (3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围. 18.计算下列各式: (1)(式中字母均为正数); (2). 19.已知 (1)当时,解关于的不等式; (2)当时,解关于的不等式 20.已知长方体AC1中,棱AB=BC=3,棱BB1=4,连接B1C,过B点作B1C的垂线交CC1于E,交B1C于F. (1)求证A1C⊥平面EBD; (2)求二面角B1—BE—A1的正切值. 21.一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用,已知每服用且克的药剂,药剂在血液中的含量(克)随着时间(小时)变化的函数关系式近似为,其中 (1)若病人一次服用9克的药剂,则有效治疗时间可达多少小时? (2)若病人第一次服用6克的药剂,6个小时后再服用3m克的药剂,要使接下来的2小时中能够持续有效治疗,试求m的最小值 参考答案 一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B 【解析】交集是两个集合的公共元素,故. 2、A 【解析】由条件利用两角和的正切公式求得tanα的值,再利用同角三角函数的基本关系与二倍角公式,求得的值 【详解】解:∵tan(α),则tanα, ∵tanα,sin2α+cos2α=1,α∈(,0), 可得 sinα ∴ 2sinα=2() 故选A 点睛】本题主要考查两角和的正切公式的应用,同角三角函数的基本关系,二倍角公式,考查计算能力,属于基础题 3、C 【解析】由,展开后利用基本不等式求最值 【详解】 且 , ∴, 当且仅当,即时,等号成立 ∴的最小值为9 故选:C 4、B 【解析】根据余弦函数的定义直接进行求解即可. 【详解】因为点是角α的终边与单位圆的交点, 所以, 故选:B 5、B 【解析】由诱导公式可得,故选B. 6、B 【解析】利用向量垂直的坐标表示可以求解. 【详解】因为,,所以,即; 故选:B. 【点睛】本题主要考查平面向量垂直的坐标表示,熟记公式是求解的关键,侧重考查数学运算的核心素养. 7、A 【解析】由题意结合辅助角公式可得,进而可得g(x)=2sin,由三角函数的性质可得,化简即可得解. 【详解】设f(x)=cosx+sinx=2sin, 向左平移m个单位长度得g(x)=2sin, ∵g(x)的图象关于y轴对称, ∴, ∴m=, 由m>0可得m的最小值为. 故选:A. 【点睛】本题考查了辅助角公式及三角函数图象与性质的应用,考查了运算求解能力,属于基础题. 8、D 【解析】设中点的坐标为,则,利用在已知的圆上可得的中点的轨迹方程. 【详解】设中点的坐标为,则, 因为点在圆上,故,整理得到. 故选:D. 【点睛】求动点的轨迹方程,一般有直接法和间接法, (1)直接法,就是设出动点的坐标,已知条件可用动点的坐标表示,化简后可得动点的轨迹方程,化简过程中注意变量的范围要求. (2)间接法,有如下几种方法:①几何法:看动点是否满足一些几何性质,如圆锥曲线的定义等;②动点转移:设出动点的坐标,其余的点可以前者来表示,代入后者所在的曲线方程即可得到欲求的动点轨迹方程;③参数法:动点的横纵坐标都可以用某一个参数来表示,消去该参数即可动点的轨迹方程. 9、B 【解析】根据特称命题的否定可得出结论. 【详解】由特称命题的否定可知,原命题的否定为:,. 故选:B. 【点睛】本题考查特称命题否定的改写,解题的关键就是弄清特称命题的否定与全称命题之间的关系,属于基础题. 10、B 【解析】根据充分条件、必要条件的定义判断即可; 【详解】解:因为,, 所以由不能推出,由能推出,故是的必要不充分条件 故选:B 二、填空题:本大题共6小题,每小题5分,共30分。 11、①④ 【解析】利用和线性相关等价于和是共线向量,故①正确,②不正确,④正确.通过举反例可得③不正确 【详解】解:若、线性相关,假设λ≠0,则,故和是共线向量 反之,若和是共线向量,则,即λμ0,故和线性相关 故和线性相关等价于和是共线向量 ①若2 ,则2 0,故和线性相关,故①正确 ②若和为非零向量,⊥,则和不是共线向量,不能推出和线性相关,故②不正确 ③若和线性相关,则和线性相关,不能推出若和线性相关,例如当时, 和可以是任意的两个向量.故③不正确 ④向量和线性相关的充要条件是和是共线向量,故④正确 故答案为①④ 【点睛】本题考查两个向量线性相关的定义,两个向量共线的定义,明确和线性相关等价于和是共线向量,是解题的关键 12、 【解析】作出的图象如下: 结合图像可知,,故 令得:或,令得: ,且 等号取不到, 故,故填. 点睛:一般讨论函数零点个数问题,都要转化为方程根的个数问题或两个函数图像交点的个数问题,本题由于涉及函数为初等函数,可以考虑函数图像来解决,转化为过定点的直线与抛物线变形图形的交点问题,对函数图像处理能力要求较高. 13、1 【解析】根据给定条件利用周期性、奇偶性计算作答. 【详解】因函数是上周期为2的奇函数,, 所以. 故答案为:1 【点睛】易错点睛:函数f(x)是周期为T周期函数,T是与x无关的非零常数,且周期函数不一定有最小正周期. 14、 【解析】由函数的奇偶性与单调性分析可得,结合对数的运算性质变形可得,从而可得结果 【详解】因为函数是定义在上的偶函数,且在区间上单调递减, 所以, 又由, 则原不等式变形可得, 解可得:, 即的取值范围为,故答案为 【点睛】本题主要考查函数的单调性与奇偶性的综合应用,考查了指数函数的单调性以及对数的运算,意在考查综合应用所学知识解答问题的能力,属于基础题 15、(1) (2) 【解析】(1)根据,之间的关系,平方后求值即可; (2)利用诱导公式化简后,再根据同角三角函数间关系求解. 【小问1详解】 ∵ ∴, . 【小问2详解】 由, 可得或(舍), 原式, ∴原式. 16、 【解析】根据函数图象的变换,求出的解析式,结合函数的单调性进行求解即可. 【详解】由数图象上所有点的横坐标压缩为原来的后, 得到,再将图象向左平移个单位长度,得到函数 的图象,即 令,函数的单调递增区间是 由,得, 的单调递增区间为. 故答案为: 三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。 17、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3) 【解析】(1)根据函数的单调性选取即可. (2) 把点代入中求解参数,再根据二次函数的最值求解即可. (3)参变分离后再求解最值即可. 【详解】(1)随着时间x的增加,y的值先减后增,而所给的三个函数中和显然都是单调函数,不满足题意, ∴选择. (2)把点代入中, 得, 解得, ∴当时,y有最小值 故当纪念章上市10天时,该纪念章的市场价最低,最低市场价为70元 , (3)由题意,令, 若存在使得不等式成立,则须, 又,当且仅当时,等号成立, 所以. 【点睛】本题主要考查了二次函数模型解决实际问题的题型,需要根据题意求解对应的二次函数式再分析最值与求参数.属于中等题型. 18、(1); (2). 【解析】(1)根据给定条件利用指数运算法则化简作答. (2)根据给定条件,利用对数换底公式及对数运算性质计算作答. 【小问1详解】 依题意,. 【小问2详解】 . 19、(1)或; (2)答案不唯一,具体见解析. 【解析】(1)先因式分解,进而解出的范围,进而结合指数函数的单调性求得答案; (2)设,然后因式分解,进而讨论a的取值范围求出t的范围,最后结合指数函数的单调性求得答案. 【小问1详解】 当时, 若可得或,即解集为或 【小问2详解】 令,不等式转化为 ①当时,不等式解集为; ②当时,不等式解集为或; ③当时,不等式解集为; ④当时,不等式解集为或. 综上所述,当时,解集为;当时,解集为或;当时,解集为;当时,解集为或. 20、(1)证明见解析 (2) 【解析】(1)先证明平面,则,再证明平面,则,从而即可证明A1C⊥平面EBD; (2)由平面,又,则,进而可得是二面角平面角,在中,求出,即可在中求出,从而即可得答案. 【小问1详解】 证明:平面,,又,, 平面,, 又平面,,且,, 平面, ,又, A1C⊥平面EBD; 【小问2详解】 解:平面,又, 是二面角的平面角, 在中,, 在中,, . 21、(1);(2) 【解析】(1)分两段解不等式,解得结果即可得解; (2)求出当时,,再根据函数的单调性求出最小值为,解不等式可得解. 【详解】(1)由题意,当可得, 当时,,解得,此时; 当时,,解得,此时, 综上可得, 所以病人一次服用9克的药剂,则有效治疗时间可达小时; (2)当时,, 由,在均为减函数, 可得在递减,即有, 由,可得,可得m的最小值为 【点睛】本题考查了分段函数的应用,正确求出分段函数解析式是解题关键,属于中档题.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服